
SMQTK Documentation
Release 0.13.0

Kitware, Inc.

Nov 12, 2019

Contents

1 Installation 3
1.1 From pip . 3
1.2 From Source . 4

2 SMQTK Architecture Overview 7
2.1 Data Abstraction . 7
2.2 Algorithms . 19
2.3 Web Service and Demonstration Applications . 30
2.4 Utilities and Applications . 46
2.5 Plugin Architecture . 60

3 Examples 67
3.1 Simple Feature Computation with ColorDescriptor . 67
3.2 Nearest Neighbor Computation with Caffe . 68
3.3 NearestNeighborServiceServer Incremental Update Example . 69

4 Release Process and Notes 81
4.1 Steps of the SMQTK Release Process . 81
4.2 Release Notes . 83

5 Indices and tables 105

Index 107

i

ii

SMQTK Documentation, Release 0.13.0

GitHub

Python toolkit for pluggable algorithms and data structures for multimedia-based machine learning.

Contents 1

https://github.com/Kitware/SMQTK

SMQTK Documentation, Release 0.13.0

2 Contents

CHAPTER 1

Installation

There are two ways to get ahold of SMQTK. The simplest is to install via the pip command. Alternatively, the source
tree can be acquired and build/install SMQTK via CMake or setuptools.

1.1 From pip

In order to get the latest version of SMQTK from PYPI:

$ pip install --upgrade smqtk

This method will install all of the same functionality as when installing from source, but not as many plugins will be
functional right out of the box. This is due to some plugin dependencies not being installable through pip. We will see
more on this in the section below.

1.1.1 Extras

A few extras are defined for the smqtk package:

• docs

– Dependencies for building SMQTK documentation.

• caffe

– Minimum required packages for when using with the Caffe plugin.

• flann

– Required packages for using FLANN-based plugins.

– There is not an adequate version in the standard PYPI repository (>=1.8.4). For FLANN plugin
functionality, it is recommended to either use your system package manager or SMQTK from source.

• postgres

– Required packages for using PostgreSQL-based plugins.

3

SMQTK Documentation, Release 0.13.0

• solr

– Required packages for using Solr-based plugins.

1.2 From Source

Acquiring and building from source is different than installing from pip because:

• Includes FLANN and libSVM1 libraries and (patched) python bindings in the CMake build. CMake installation
additionally installs these components

• CPack packaging support (make RPMs, etc.).2

The inclusion of FLANN and libSVM in the source is generally helpful due to their lack of [up-to-date] availability in
the PYPI and system package repositories. When available via a system package manager, it is often not easy to use
when dealing with a virtual environment (e.g. virtualenv or Anaconda).

The sections below will cover the quick-start steps in more detail:

• System dependencies

• Getting the Source

• Installing Python dependencies

• CMake Build

• Building the Documentation

1.2.1 Quick Start

$ # Check things out
$ cd /where/things/should/go/
$ git clone https://github.com/Kitware/SMQTK.git source
$ # Install python dependencies to environment
$ pip install -r source/requirements.txt
$ # SMQTK build
$ mkdir build
$ pushd build
$ cmake ../source
$ make -j2
$ popd
$ # Set up SMQTK environment by sourcing file
$. build/setup_env.build.sh
$ # Running tests
$ python source/setup.py test

1.2.2 System dependencies

In order retrieve and build from source, your system will need at a minimum:

• git

• cmake >=2.8

• c++ compiler (e.g. gcc, clang, MSVC etc.)

1 Included libSVM is a customized version based on v3.1
2 These features are largely still in development and may not work correctly yet.

4 Chapter 1. Installation

SMQTK Documentation, Release 0.13.0

In order to run the provided IQR-search web-application, introduced later when describing the provided web services
and applications, the following system dependencies are additionally required:

• MongoDB3

1.2.3 Getting the Source

The SMQTK source code is currently hosted on GitHub here.

To clone the repository locally:

$ git clone https://github.com/Kitware/SMQTK.git /path/to/local/source

1.2.4 Installing Python dependencies

After deciding and activating what environment to install python packages into (system or a virtual), the python
dependencies should be installed based on the requirements.*.txt files found in the root of the source tree.
These files detail different dependencies, and their exact versions tested, for different components of SMQTK.

The the core required python packages are detailed in: requirements.txt.

In addition, if you wish to be able to build the Sphinx based documentation for the project: requirements.docs.
txt. These are separated because not everyone wishes or needs to build the documentation.

Other optional dependencies and what plugins they correspond to are found in: requirements.optional.txt

Note that if conda4 is being used, not all packages listed in our requirements files may be found in conda’s reposi-
tory.

Installation of python dependencies via pip will look like the following:

$ pip install -r requirements.txt [-r requirements.docs.txt]

Where the requirements.docs.txt argument is only needed if you intend to build the SMQTK documentation.

Building NumPy and SciPy

If NumPy and SciPy is being built from source when installing from pip, either due to a wheel not existing for your
platform or something else, it may be useful or required to install BLAS or LAPACK libraries for certain functionality
and efficiency.

Additionally, when installing these packages using pip, if the LDFLAGS or CFLAGS/CXXFLAGS/CPPFLAGS are
set, their build may fail as they are assuming specific setups5.

Additional Plugin Dependencies

Some plugins in SMQTK may require additional dependencies in order to run, usually python but sometimes not. In
general, each plugin should document and describe their specific dependencies.

For example, the ColorDescriptor implementation required a 3rd party tool to downloaded and setup. Its re-
quirements and restrictions are documented in python/smqtk/algorithms/descriptor_generator/
colordescriptor/INSTALL.md.

3 This requirement will hopefully go away in the future, but requires an alternate session storage implementation.
4 For more information on the conda command and system, see the Conda documentation.
5 This may have changed since wheels were introduced.

1.2. From Source 5

https://github.com/Kitware/SMQTK
http://sphinx-doc.org/
http://conda.pydata.org/docs/

SMQTK Documentation, Release 0.13.0

1.2.5 CMake Build

See the example below for a simple example of how to build SMQTK

Navigate to where the build products should be located. It is recommended that this not be the source tree. Build
products include some C/C++ libraries, python modules and generated scripts.

If the desired build directory, and run the following, filling in <...> slots with appropriate values:

$ cmake <source_dir_path>

Optionally, the ccmake command line utility, or the GUI version, may be run in order to modify options for building
additional modules. Currently, the selection is very minimal, but may be expanded over time.

1.2.6 Building the Documentation

All of the documentation for SMQTK is maintained as a collection of reStructuredText_ documents in the docs
folder of the project. This documentation can be processed by the Sphinx documentation tool into a variety of
documentation formats, the most common of which is HTML.

Within the docs directory is a Unix Makefile (for Windows systems, a make.bat file with similar capabilities
exists). This Makefile takes care of the work required to run Sphinx to convert the raw documentation to an
attractive output format. For example:

make html

Will generate HTML format documentation rooted a docs/_build/html/index.html.

The command:

make help

Will show the other documentation formats that may be available (although be aware that some of them require
additional dependencies such as TeX or LaTeX.)

Live Preview

While writing documentation in a mark up format such as reStructuredText it is very helpful to be able to
preview the formatted version of the text. While it is possible to simply run the make html command peri-
odically, a more seamless version of this is available. Within the docs directory is a small Python script called
sphinx_server.py. If you execute that file with the following command:

python sphinx_server.py

It will run small process that watches the docs folder for changes in the raw documentation *.rst files and re-runs
make html when changes are detected. It will serve the resulting HTML files at http://localhost:5500. Thus having
that URL open in a browser will provide you with a relatively up to date preview of the rendered documentation.

6 Chapter 1. Installation

http://localhost:5500

CHAPTER 2

SMQTK Architecture Overview

SMQTK is mainly comprised of 4 high level components, with additional sub-modules utilities and other control
structures.

2.1 Data Abstraction

An important part of any algorithm is the data its working over and the data that it produces. An important part of
working with large scales of data is where the data is stored and how its accessed. The smqtk.representation
module contains interfaces and plugins for various core data structures, allowing plugin implementations to decide
where and how the underlying raw data should be stored and accessed. This potentially allows algorithms to handle
more data that would otherwise be feasible on a single machine.

class smqtk.representation.SmqtkRepresentation
Interface for data representation interfaces and implementations.

Data should be serializable, so this interface adds abstract methods for serializing and de-serializing SMQTK
data representation instances.

2.1.1 Data Representation Structures

The following are the core data representation interfaces.

Note: It is required that implementations have a common serialization format so that they may be stored or transported
by other structures in a general way without caring what the specific implementation is. For this we require that
all implementations be serializable via the pickle (and thus cPickle) module functions.

DataElement

class smqtk.representation.DataElement
Abstract interface for a byte data container.

7

SMQTK Documentation, Release 0.13.0

The primary “value” of a DataElement is the byte content wrapped. Since this can technically change due to
external forces, we cannot guarantee that an element is immutable. Thus DataElement instances are not con-
sidered generally hashable. Specific implementations may define a __hash__ method if that implementation
reflects a data source that guarantees immutability.

UUIDs should be cast-able to a string and maintain unique-ness after conversion.

clean_temp()
Clean any temporary files created by this element. This does nothing if no temporary files have been
generated for this element yet.

content_type()

Returns Standard type/subtype string for this data element, or None if the content type is un-
known.

Return type str or None

classmethod from_uri(uri)
Construct a new instance based on the given URI.

This function may not be implemented for all DataElement types.

Parameters uri (str) – URI string to resolve into an element instance

Raises

• NoUriResolutionError – This element type does not implement URI resolution.

• smqtk.exceptions.InvalidUriError – This element type could not resolve the
provided URI string.

Returns New element instance of our type.

Return type DataElement

get_bytes()

Returns Get the bytes for this data element.

Return type bytes

is_empty()
Check if this element contains no bytes.

The intend of this method is to quickly check if there is any data behind this element, ideally without
having to read all/any of the underlying data.

Returns If this element contains 0 bytes.

Return type bool

is_read_only()

Returns If this element can only be read from.

Return type bool

md5()
Get the MD5 checksum of this element’s binary content.

Returns MD5 hex checksum of the data content.

Return type str

8 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

SMQTK Documentation, Release 0.13.0

set_bytes(b)
Set bytes to this data element.

Not all implementations may support setting bytes (check writable method return).

This base abstract method should be called by sub-class implementations first. We check for mutability
based on writable() method return.

Parameters b (bytes) – bytes to set.

Raises ReadOnlyError – This data element can only be read from / does not support writing.

sha1()
Get the SHA1 checksum of this element’s binary content.

Returns SHA1 hex checksum of the data content.

Return type str

sha512()
Get the SHA512 checksum of this element’s binary content.

Returns SHA512 hex checksum of the data content.

Return type str

to_buffered_reader()
Wrap this element’s bytes in a io.BufferedReader instance for use as file-like object for reading.

As we use the get_bytes function, this element’s bytes must safely fit in memory for this method to be
usable.

Returns New BufferedReader instance

Return type io.BufferedReader

uuid()
UUID for this data element.

This many take different forms from integers to strings to a uuid.UUID instance. This must return a
hashable data type.

By default, this ends up being the hex stringification of the SHA1 hash of this data’s bytes. Specific
implementations may provide other UUIDs, however.

Returns UUID value for this data element. This return value should be hashable.

Return type collections.Hashable

writable()

Returns if this instance supports setting bytes.

Return type bool

write_temp(temp_dir=None)
Write this data’s bytes to a temporary file on disk, returning the path to the written file, whose extension is
guessed based on this data’s content type.

It is not guaranteed that the returned file path does not point to the original data, i.e. writing to the returned
filepath may modify the original data.

NOTE: The file path returned should not be explicitly removed by the user. Instead, the clean_temp()
method should be called on this object.

2.1. Data Abstraction 9

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.BufferedReader
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Parameters temp_dir (None or str) – Optional directory to write temporary file in, oth-
erwise we use the platform default temporary files directory. If this is an empty string, we
count it the same as having provided None.

Returns Path to the temporary file

Return type str

DataSet

class smqtk.representation.DataSet
Abstract interface for data sets, that contain an arbitrary number of DataElement instances of arbitrary im-
plementation type, keyed on DataElement UUID values.

This should only be used with DataElements whose byte content is expected not to change. If they do, then
UUID keys may no longer represent the elements associated with them.

add_data(*elems)
Add the given data element(s) instance to this data set.

NOTE: Implementing methods should check that input elements are in fact DataElement instances.

Parameters elems (smqtk.representation.DataElement) – Data element(s) to add

count()

Returns The number of data elements in this set.

Return type int

get_data(uuid)
Get the data element the given uuid references, or raise an exception if the uuid does not reference any
element in this set.

Raises KeyError – If the given uuid does not refer to an element in this data set.

Parameters uuid (collections.Hashable) – The uuid of the element to retrieve.

Returns The data element instance for the given uuid.

Return type smqtk.representation.DataElement

has_uuid(uuid)
Test if the given uuid refers to an element in this data set.

Parameters uuid (collections.Hashable) – Unique ID to test for inclusion. This
should match the type that the set implementation expects or cares about.

Returns True if the given uuid matches an element in this set, or False if it does not.

Return type bool

uuids()

Returns A new set of uuids represented in this data set.

Return type set

DescriptorElement

class smqtk.representation.DescriptorElement(type_str, uuid)
Abstract descriptor vector container.

This structure supports implementations that cache descriptor vectors on a per-UUID basis.

10 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set

SMQTK Documentation, Release 0.13.0

UUIDs must maintain unique-ness when transformed into a string.

Descriptor element equality based on shared descriptor type and vector equality. Two descriptor vectors that are
generated by different types of descriptor generator should not be considered the same (though, this may be up
for discussion).

Stored vectors should be effectively immutable.

classmethod from_config(config_dict, type_str, uuid, merge_default=True)
Instantiate a new instance of this class given the desired type, uuid, and JSON-compliant configuration
dictionary.

Parameters

• type_str (str) – Type of descriptor. This is usually the name of the content descriptor
that generated this vector.

• uuid (collections.Hashable) – Unique ID reference of the descriptor.

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• merge_default (bool) – Merge the given configuration on top of the default provided
by get_default_config.

Returns Constructed instance from the provided config.

Return type DescriptorElement

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for gener-
ating what the configuration dictionary would look like for this class without instantiating it.

By default, we observe what this class’s constructor takes as arguments, aside from the first two assumed
positional arguments, turning those argument names into configuration dictionary keys. If any of those
arguments have defaults, we will add those values into the configuration dictionary appropriately. The
dictionary returned should only contain JSON compliant value types.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

Returns Default configuration dictionary for the class.

Return type dict

classmethod get_many_vectors(descriptors)
Get an iterator over vectors associated with given descriptors.

Note Most subclasses should override internal method _get_many_vectors rather than this ex-
ternal wrapper function. If a subclass does override this classmethod, it is responsible for
appropriately handling any valid DescriptorElement, regardless of subclass.

Parameters descriptors (collections.Iterable[smqtk.representation.
descriptor_element.DescriptorElement]) – Iterable of descriptors to query
for.

Returns Iterable of vectors associated with the given descriptors or None if the descriptor has
no associated vector. Results are returned in the order that descriptors were given.

Return type collections.Iterable[Union[numpy.ndarray, None]]

has_vector()

Returns Whether or not this container current has a descriptor vector stored.

Return type bool

2.1. Data Abstraction 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

set_vector(new_vec)
Set the contained vector.

If this container already stores a descriptor vector, this will overwrite it.

Parameters new_vec (numpy.ndarray) – New vector to contain.

Returns Self.

Return type DescriptorMemoryElement

type()

Returns Type label type of the DescriptorGenerator that generated this vector.

Return type str

uuid()

Returns Unique ID for this vector.

Return type collections.Hashable

vector()

Returns Get the stored descriptor vector as a numpy array. This returns None of there is no
vector stored in this container.

Return type numpy.ndarray or None

DescriptorIndex

class smqtk.representation.DescriptorIndex
Index of descriptors, keyed and query-able by descriptor UUID.

Note that these indexes do not use the descriptor type strings. Thus, if a set of descriptors has multiple elements
with the same UUID, but different type strings, they will bash each other in these indexes. In such a case, when
dealing with descriptors for different generators, it is advisable to use multiple indices.

add_descriptor(descriptor)
Add a descriptor to this index.

Adding the same descriptor multiple times should not add multiple copies of the descriptor in the index
(based on UUID). Added descriptors overwrite indexed descriptors based on UUID.

Parameters descriptor (smqtk.representation.DescriptorElement) – De-
scriptor to index.

add_many_descriptors(descriptors)
Add multiple descriptors at one time.

Adding the same descriptor multiple times should not add multiple copies of the descriptor in the index
(based on UUID). Added descriptors overwrite indexed descriptors based on UUID.

Parameters descriptors (collections.Iterable[smqtk.representation.
DescriptorElement]) – Iterable of descriptor instances to add to this index.

clear()
Clear this descriptor index’s entries.

count()

Returns Number of descriptor elements stored in this index.

Return type int

12 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

SMQTK Documentation, Release 0.13.0

get_descriptor(uuid)
Get the descriptor in this index that is associated with the given UUID.

Parameters uuid (collections.Hashable) – UUID of the DescriptorElement to get.

Raises KeyError – The given UUID doesn’t associate to a DescriptorElement in this index.

Returns DescriptorElement associated with the queried UUID.

Return type smqtk.representation.DescriptorElement

get_many_descriptors(uuids)
Get an iterator over descriptors associated to given descriptor UUIDs.

Parameters uuids (collections.Iterable[collections.Hashable]) – Iterable
of descriptor UUIDs to query for.

Raises KeyError – A given UUID doesn’t associate with a DescriptorElement in this index.

Returns Iterator of descriptors associated to given uuid values.

Return type collections.Iterable[smqtk.representation.DescriptorElement]

get_many_vectors(uuids)
Get underlying vectors of descriptors associated with given uuids.

Parameters uuids (collections.Iterable[collections.Hashable]) – Iterable
of descriptor UUIDs to query for.

Returns Iterator of vectors for descriptors associated with given uuid values.

Return type collections.Iterable[smqtk.representation.DescriptorElement]

has_descriptor(uuid)
Check if a DescriptorElement with the given UUID exists in this index.

Parameters uuid (collections.Hashable) – UUID to query for

Returns True if a DescriptorElement with the given UUID exists in this index, or False if not.

Return type bool

items()
alias for iteritems

iterdescriptors()
Return an iterator over indexed descriptor element instances. :rtype: collec-
tions.Iterator[smqtk.representation.DescriptorElement]

iteritems()
Return an iterator over indexed descriptor key and instance pairs. :rtype: collec-
tions.Iterator[(collections.Hashable,

smqtk.representation.DescriptorElement)]

iterkeys()
Return an iterator over indexed descriptor keys, which are their UUIDs. :rtype: collec-
tions.Iterator[collections.Hashable]

keys()
alias for iterkeys

remove_descriptor(uuid)
Remove a descriptor from this index by the given UUID.

2.1. Data Abstraction 13

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Parameters uuid (collections.Hashable) – UUID of the DescriptorElement to re-
move.

Raises KeyError – The given UUID doesn’t associate to a DescriptorElement in this index.

remove_many_descriptors(uuids)
Remove descriptors associated to given descriptor UUIDs from this index.

Parameters uuids (collections.Iterable[collections.Hashable]) – Iterable
of descriptor UUIDs to remove.

Raises KeyError – A given UUID doesn’t associate with a DescriptorElement in this index.

DetectionElement

class smqtk.representation.DetectionElement(uuid)
Representation of a spatial detection.

classmethod from_config(config_dict, uuid, merge_default=True)
Override of smqtk.utils.configuration.Configurable.from_config() with the added
runtime argument uuid. See parent method documentation for details.

Parameters

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• uuid (collections.Hashable) – UUID to assign to the produced DetectionEle-
ment.

• merge_default (bool) – Merge the given configuration on top of the default provided
by get_default_config.

Returns Constructed instance from the provided config.

Return type DetectionElement

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for gener-
ating what the configuration dictionary would look like for this class without instantiating it.

By default, we observe what this class’s constructor takes as arguments, turning those argument names
into configuration dictionary keys. If any of those arguments have defaults, we will add those values into
the configuration dictionary appropriately. The dictionary returned should only contain JSON compliant
value types.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

Returns Default configuration dictionary for the class.

Return type dict

>>> # noinspection PyUnresolvedReferences
>>> class SimpleConfig(Configurable):
... def __init__(self, a=1, b='foo'):
... self.a = a
... self.b = b
... def get_config(self):
... return {'a': self.a, 'b': self.b}
>>> self = SimpleConfig()
>>> config = self.get_default_config()
>>> assert config == {'a': 1, 'b': 'foo'}

14 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

SMQTK Documentation, Release 0.13.0

get_detection()

Returns The paired spatial bounding box and classification element of this detection.

Return type (smqtk.representation.AxisAlignedBoundingBox,
smqtk.representation.ClassificationElement)

Raises NoDetectionError – No detection AxisAlignedBoundingBox and Classifica-
tionElement set yet.

has_detection()

Returns Whether or not this container currently contains a valid detection bounding box and
classification element (must be non-zero).

Return type bool

set_detection(bbox, classification_element)
Set a bounding box and classification element to this detection element.

Parameters

• bbox (smqtk.representation.AxisAlignedBoundingBox) – Spatial bound-
ing box instance.

• classification_element (smqtk.representation.
ClassificationElement) – The classification of this detection.

Raises ValueError – No, or invalid, AxisAlignedBoundingBox or ClassificationElement was
provided.

Returns Self

Return type DetectionElement

2.1.2 Data Support Structures

Other data structures are provided in the [smqtk.representation](/python/smqtk/representation) module to
assist with the use of the above described structures:

ClassificationElementFactory

class smqtk.representation.ClassificationElementFactory(type, type_config)
Factory class for producing ClassificationElement instances of a specified type and configuration.

classmethod from_config(config_dict, merge_default=True)
Instantiate a new instance of this class given the configuration JSON-compliant dictionary encapsulating
initialization arguments.

This method should not be called via super unless and instance of the class is desired.

Parameters

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• merge_default (bool) – Merge the given configuration on top of the default provided
by get_default_config.

Returns Constructed instance from the provided config.

Return type ClassificationElementFactory

2.1. Data Abstraction 15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it doesn’t
make sense to store some object constructor parameters are expected to be supplied at as configuration
values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those parameters out.
In such cases, the object’s from_config class-method would also take additional positional arguments
to fill in for the parameters that this returned configuration lacks.

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for gener-
ating what the configuration dictionary would look like for this class without instantiating it.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

Returns Default configuration dictionary for the class.

Return type dict

new_classification(type, uuid)
Create a new ClassificationElement instance of the configured implementation.

Parameters

• type (str) – Type of classifier. This is usually the name of the classifier that generated
this result.

• uuid (collections.Hashable) – UUID to associate with the classification.

Returns New ClassificationElement instance.

Return type smqtk.representation.ClassificationElement

type = None

Type type | smqtk.representation.ClassificationElement

DescriptorElementFactory

class smqtk.representation.DescriptorElementFactory(d_type, type_config)
Factory class for producing DescriptorElement instances of a specified type and configuration.

classmethod from_config(config_dict, merge_default=True)
Instantiate a new instance of this class given the configuration JSON-compliant dictionary encapsulating
initialization arguments.

This method should not be called via super unless and instance of the class is desired.

Parameters

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• merge_default (bool) – Merge the given configuration on top of the default provided
by get_default_config.

Returns Constructed instance from the provided config.

16 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Return type DescriptorElementFactory

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it doesn’t
make sense to store some object constructor parameters are expected to be supplied at as configuration
values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those parameters out.
In such cases, the object’s from_config class-method would also take additional positional arguments
to fill in for the parameters that this returned configuration lacks.

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for gener-
ating what the configuration dictionary would look like for this class without instantiating it.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

Returns Default configuration dictionary for the class.

Return type dict

new_descriptor(type_str, uuid)
Create a new DescriptorElement instance of the configured implementation

Parameters

• type_str (str) – Type of descriptor. This is usually the name of the content descriptor
that generated this vector.

• uuid (collections.Hashable) – UUID to associate with the descriptor

Returns New DescriptorElement instance

Return type smqtk.representation.DescriptorElement

DetectionElementFactory

class smqtk.representation.DetectionElementFactory(elem_type, elem_config)
Factory class for producing DetectionElement instances of a specified type and configuration.

classmethod from_config(config_dict, merge_default=True)
Instantiate a new instance of this class given the configuration JSON-compliant dictionary encapsulating
initialization arguments.

This base method is adequate without modification when a class’s constructor argument types are JSON-
compliant. If one or more are not, however, this method then needs to be overridden in order to convert
from a JSON-compliant stand-in into the more complex object the constructor requires. It is recommended
that when complex types are used they also inherit from the Configurable in order to hopefully make
easier the conversion to and from JSON-compliant stand-ins.

When this method does need to be overridden, this usually looks like the following pattern:

2.1. Data Abstraction 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SMQTK Documentation, Release 0.13.0

class MyClass (Configurable):

@classmethod
def from_config(cls, config_dict, merge_default=True):

Optionally guarantee default values are present in the
configuration dictionary. This statement pairs with the
``merge_default=False`` parameter in the super call.
This also in effect shallow copies the given non-dictionary
entries of ``config_dict`` due to the merger with the
default config.
if merge_default:

config_dict = merge_dict(cls.get_default_config(),
config_dict)

#
Perform any overriding here.
#

Create and return an instance using the super method.
return super(MyClass, cls).from_config(config_dict,

merge_default=False)

This method should not be called via super unless an instance of the class is desired.

Parameters

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• merge_default (bool) – Merge the given configuration on top of the default provided
by get_default_config.

Returns Constructed instance from the provided config.

Return type Configurable

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it doesn’t
make sense to store some object constructor parameters are expected to be supplied at as configuration
values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those parameters out.
In such cases, the object’s from_config class-method would also take additional positional arguments
to fill in for the parameters that this returned configuration lacks.

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for gener-
ating what the configuration dictionary would look like for this class without instantiating it.

By default, we observe what this class’s constructor takes as arguments, turning those argument names
into configuration dictionary keys. If any of those arguments have defaults, we will add those values into
the configuration dictionary appropriately. The dictionary returned should only contain JSON compliant
value types.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

18 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

SMQTK Documentation, Release 0.13.0

Returns Default configuration dictionary for the class.

Return type dict

>>> # noinspection PyUnresolvedReferences
>>> class SimpleConfig(Configurable):
... def __init__(self, a=1, b='foo'):
... self.a = a
... self.b = b
... def get_config(self):
... return {'a': self.a, 'b': self.b}
>>> self = SimpleConfig()
>>> config = self.get_default_config()
>>> assert config == {'a': 1, 'b': 'foo'}

new_detection(uuid)
Create a new DetectionElement instance o the configured implementation.

Parameters uuid (collections.Hashable) – UUID to assign the element.

Returns New DetectionElement instance.

Return type DetectionElement

2.2 Algorithms

2.2.1 Algorithm Interfaces

class smqtk.algorithms.SmqtkAlgorithm
Parent class for all algorithm interfaces.

name

Returns The name of this class type.

Return type str

Here we list and briefly describe the high level algorithm interfaces which SMQTK provides. There is at least one
implementation available for each interface. Some implementations will require additional dependencies that cannot
be packaged with SMQTK.

Classifier

This interface represents algorithms that classify DescriptorElement instances into discrete labels or label con-
fidences.

class smqtk.algorithms.classifier.Classifier
Interface for algorithms that classify input descriptors into discrete labels and/or label confidences.

classify(d, factory=<smqtk.representation.classification_element_factory.ClassificationElementFactory
object>, overwrite=False)

Classify the input descriptor against one or more discrete labels, outputting a ClassificationElement con-
taining the classification result.

We return confidence values for each label the configured model contains. Implementations may act in
a discrete manner whereby only one label is marked with a 1 value (others being 0), or in a continuous
manner whereby each label is given a confidence-like value in the [0, 1] range.

2.2. Algorithms 19

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SMQTK Documentation, Release 0.13.0

The returned ClassificationElement will have the same UUID as the input
DescriptorElement.

Parameters

• d (smqtk.representation.DescriptorElement) – Input descriptor to classify

• factory (smqtk.representation.ClassificationElementFactory) –
Classification element factory. The default factory yields MemoryClassificationElement
instances.

• overwrite (bool) – Recompute classification of the input descriptor and set the results
to the ClassificationElement produced by the factory.

Raises

• ValueError – The given descriptor element did not have a vector to operate on.

• RuntimeError – Could not perform classification for some reason (see message in
raised exception).

Returns Classification result element

Return type smqtk.representation.ClassificationElement

classify_async(d_iter, factory=<smqtk.representation.classification_element_factory.ClassificationElementFactory
object>, overwrite=False, procs=None, use_multiprocessing=False, ri=None)

Asynchronously classify the DescriptorElements in the given iterable.

Parameters

• d_iter (collections.Iterable[smqtk.representation.
DescriptorElement]) – Iterable of DescriptorElements

• factory (smqtk.representation.ClassificationElementFactory) –
Classifier element factory to use for element generation. The default factory yields Mem-
oryClassificationElement instances.

• overwrite (bool) – Recompute classification of the input descriptor and set the results
to the ClassificationElement produced by the factory.

• procs (None | int) – Explicit number of cores/thread/processes to use.

• use_multiprocessing (bool) – Use multiprocessing instead of threading.

• ri (float | None) – Progress reporting interval in seconds. Set to a value > 0 to
enable. Disabled by default.

Returns Mapping of input DescriptorElement instances to the computed ClassificationElement.
ClassificationElement UUID’s are congruent with the UUID of the DescriptorElement

Return type dict[smqtk.representation.DescriptorElement, smqtk.representation.ClassificationElement]

get_labels()
Get the sequence of class labels that this classifier can classify descriptors into. This includes the negative
label.

Returns Sequence of possible classifier labels.

Return type collections.Sequence[collections.Hashable]

Raises RuntimeError – No model loaded.

20 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#RuntimeError

SMQTK Documentation, Release 0.13.0

DescriptorGenerator

This interface represents algorithms that generate whole-content descriptor vectors for a single given input
DataElement instance. The input DataElement must be of a content type that the DescriptorGenerator
supports, referenced against the DescriptorGenerator.valid_content_types method.

The compute_descriptor method also requires a DescriptorElementFactory instance to tell the algo-
rithm how to generate the DescriptorElement it should return. The returned DescriptorElement instance
will have a type equal to the name of the DescriptorGenerator class that generated it, and a UUID that is the
same as the input DataElement instance.

If a DescriptorElement implementation that supports persistant storage is generated, and there is already a
descriptor associated with the given type name and UUID values, the descriptor is returned without re-computation.

If the overwrite parameter is True, the DescriptorGenerator instance will re-compute a descriptor for the
input DataElement, setting it to the generated DescriptorElement. This will overwrite descriptor data in
persistant storage if the DescriptorElement type used supports it.

This interface supports a high-level, implementation agnostic asynchronous descriptor computation method. This is
given an iterable of DataElement instances, a single DescriptorElementFactory that is used to produce all
descriptor

class smqtk.algorithms.descriptor_generator.DescriptorGenerator
Base abstract Feature Descriptor interface

compute_descriptor(data, descr_factory=<smqtk.representation.descriptor_element_factory.DescriptorElementFactory
object>, overwrite=False)

Given some data, return a descriptor element containing a descriptor vector.

Raises

• RuntimeError – Descriptor extraction failure of some kind.

• ValueError – Given data element content was not of a valid type with respect to this
descriptor.

Parameters

• data (smqtk.representation.DataElement) – Some kind of input data for the
feature descriptor.

• descr_factory (smqtk.representation.DescriptorElementFactory)
– Factory instance to produce the wrapping descriptor element instance. The default fac-
tory produces DescriptorMemoryElement instances by default.

• overwrite (bool) – Whether or not to force re-computation of a descriptor vector
for the given data even when there exists a precomputed vector in the generated Descrip-
torElement as generated from the provided factory. This will overwrite the persistently
stored vector if the provided factory produces a DescriptorElement implementation with
such storage.

Returns Result descriptor element. UUID of this output descriptor is the same as the UUID of
the input data element.

Return type smqtk.representation.DescriptorElement

compute_descriptor_async(data_iter, descr_factory=<smqtk.representation.descriptor_element_factory.DescriptorElementFactory
object>, overwrite=False, procs=None, **kwds)

Asynchronously compute feature data for multiple data items.

Base implementation additional keyword arguments:

use_mp [= False] If multi-processing should be used vs. multi-threading.

2.2. Algorithms 21

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Parameters

• data_iter (collections.Iterable[smqtk.representation.
DataElement]) – Iterable of data elements to compute features for. These must
have UIDs assigned for feature association in return value.

• descr_factory (smqtk.representation.DescriptorElementFactory)
– Factory instance to produce the wrapping descriptor element instance. The default fac-
tory produces DescriptorMemoryElement instances by default.

• overwrite (bool) – Whether or not to force re-computation of a descriptor vectors
for the given data even when there exists precomputed vectors in the generated Descrip-
torElements as generated from the provided factory. This will overwrite the persistently
stored vectors if the provided factory produces a DescriptorElement implementation such
storage.

• procs (int | None) – Optional specification of how many processors to use when
pooling sub-tasks. If None, we attempt to use all available cores.

Raises ValueError – An input DataElement was of a content type that we cannot handle.

Returns Mapping of input DataElement UUIDs to the computed descriptor element for that
data. DescriptorElement UUID’s are congruent with the UUID of the data element it is the
descriptor of.

Return type dict[collections.Hashable, smqtk.representation.DescriptorElement]

ImageReader

class smqtk.algorithms.image_io.ImageReader
Interface for algorithms that load a raster image matrix from a data element.

is_valid_element(data_element)
Check if the given DataElement instance reports a content type that matches one of the MIME types
reported by valid_content_types.

This override checks if the DataElement has the matrix property as the MatrixDataElement
would provide, and that its value of an expected type.

Parameters data_element (smqtk.representation.DataElement) – Data ele-
ment instance to check.

Returns True if the given element has a valid content type as reported by
valid_content_types, and False if not.

Return type bool

load_as_matrix(data_element, pixel_crop=None)
Load an image matrix from the given data element.

If the given DataElement instance defines a matrix property this method simply returns that. This
is intended to interface with instances of smqtk.representation.data_element.matrix.
MatrixDataElement.

When not loading from a short-cut matrix, matrix return format is ImageReader implementation depen-
dant. Implementations of this interface should specify and describe their return type.

Aside from the exceptions documented below, other exceptions may be raised when an image fails to load
that are implementation dependent.

Parameters

22 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

• data_element (smqtk.representation.DataElement) – DataElement to
load image data from.

• pixel_crop (None|smqtk.representation.AxisAlignedBoundingBox)
– Optional bounding box specifying a pixel sub-region to load from the given data. If this
is provided it must represent a valid sub-region within the loaded image, otherwise a Run-
timeError is raised. Handling of non-integer aligned boxes are implementation dependant.

Raises

• RuntimeError – A crop region was specified but did not specify a valid sub-region of
the image.

• AssertionError – The data_element provided defined a matrix at-
tribute/property, but its access did not result in an expected value.

• ValueError –

This error is raised when:

– The given data_element was not of a valid content type.

– A pixel_crop bounding box was provided but was zero volume.

– pixel_crop bounding box vertices are not fully represented by integers.

Returns Numpy ndarray of the image data. Specific return format is implementation dependant.

Return type numpy.ndarray

HashIndex

This interface describes specialized NearestNeighborsIndex implementations designed to index hash codes
(bit vectors) via the hamming distance function. Implementations of this interface are primarily used with the
LSHNearestNeighborIndex implementation.

Unlike the NearestNeighborsIndex interface from which this interface descends, HashIndex instances are
build with an iterable of numpy.ndarray and nn returns a numpy.ndarray.

class smqtk.algorithms.nn_index.hash_index.HashIndex
Specialized NearestNeighborsIndex for indexing unique hash codes bit-vectors) in memory (numpy
arrays) using the hamming distance metric.

Implementations of this interface cannot be used in place of something requiring a
NearestNeighborsIndex implementation due to the speciality of this interface.

Only unique bit vectors should be indexed. The nn method should not return the same bit vector more than once
for any query.

build_index(hashes)
Build the index with the given hash codes (bit-vectors).

Subsequent calls to this method should rebuild the current index. This method shall not add to the existing
index nor raise an exception to as to protect the current index.

Raises ValueError – No data available in the given iterable.

Parameters hashes (collections.Iterable[numpy.ndarray[bool]]) – Iter-
able of descriptor elements to build index over.

count()

Returns Number of elements in this index.

2.2. Algorithms 23

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Return type int

nn(h, n=1)
Return the nearest N neighbor hash codes as bit-vectors to the given hash code bit-vector.

Distances are in the range [0,1] and are the percent different each neighbor hash is from the query, based
on the number of bits contained in the query (normalized hamming distance).

Raises ValueError – Current index is empty.

Parameters

• h (numpy.ndarray[bool]) – Hash code to compute the neighbors of. Should be
the same bit length as indexed hash codes.

• n (int) – Number of nearest neighbors to find.

Returns Tuple of nearest N hash codes and a tuple of the distance values to those neighbors.

Return type (tuple[numpy.ndarray[bool]], tuple[float])

remove_from_index(hashes)
Partially remove hashes from this index.

Parameters hashes (collections.Iterable[numpy.ndarray[bool]]) – Iter-
able of numpy boolean hash vectors to remove from this index.

Raises

• ValueError – No data available in the given iterable.

• KeyError – One or more UIDs provided do not match any stored descriptors.

update_index(hashes)
Additively update the current index with the one or more hash vectors given.

If no index exists yet, a new one should be created using the given hash vectors.

Raises ValueError – No data available in the given iterable.

Parameters hashes (collections.Iterable[numpy.ndarray[bool]]) – Iter-
able of numpy boolean hash vectors to add to this index.

LshFunctor

Implementations of this interface define the generation of a locality-sensitive hash code for a given
DescriptorElement. These are used in LSHNearestNeighborIndex instances.

class smqtk.algorithms.nn_index.lsh.functors.LshFunctor
Locality-sensitive hashing functor interface.

The aim of such a function is to be able to generate hash codes (bit-vectors) such that similar items map to the
same or similar hashes with a high probability. In other words, it aims to maximize hash collision for similar
items.

Building Models

Some hash functions want to build a model based on some training set of descriptors. Due to the non-standard
nature of algorithm training and model building, please refer to the specific implementation for further informa-
tion on whether model training is needed and how it is accomplished.

get_hash(descriptor)
Get the locality-sensitive hash code for the input descriptor.

24 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

Parameters descriptor (numpy.ndarray[float]) – Descriptor vector we should
generate the hash of.

Returns Generated bit-vector as a numpy array of booleans.

Return type numpy.ndarray[bool]

NearestNeighborsIndex

This interface defines a method to build an index from a set of DescriptorElement instances
(NearestNeighborsIndex.build_index) and a nearest-neighbors query function for getting a number of
near neighbors to e query DescriptorElement (NearestNeighborsIndex.nn).

Building an index requires that some non-zero number of DescriptorElement instances be passed into the
build_index method. Subsequent calls to this method should rebuild the index model, not add to it. If an im-
plementation supports persistant storage of the index, it should overwrite the configured index.

The nn method uses a single DescriptorElement to query the current index for a specified number of nearest
neighbors. Thus, the NearestNeighborsIndex instance must have a non-empty index loaded for this method to
function. If the provided query DescriptorElement does not have a set vector, this method will also fail with an
exception.

This interface additionally requires that implementations define a countmethod, which returns the number of distinct
DescriptorElement instances are in the index.

class smqtk.algorithms.nn_index.NearestNeighborsIndex
Common interface for descriptor-based nearest-neighbor computation over a built index of descriptors.

Implementations, if they allow persistent storage of their index, should take the necessary parameters at con-
struction time. Persistent storage content should be (over)written build_index is called.

Implementations should be thread safe and appropriately protect internal model components from concurrent
access and modification.

build_index(descriptors)
Build the index with the given descriptor data elements.

Subsequent calls to this method should rebuild the current index. This method shall not add to the existing
index nor raise an exception to as to protect the current index.

Raises ValueError – No data available in the given iterable.

Parameters descriptors (collections.Iterable[smqtk.
representation.DescriptorElement]) – Iterable of descriptor elements
to build index over.

count()

Returns Number of elements in this index.

Return type int

nn(d, n=1)
Return the nearest N neighbors to the given descriptor element.

Raises

• ValueError – Input query descriptor d has no vector set.

• ValueError – Current index is empty.

Parameters

2.2. Algorithms 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

SMQTK Documentation, Release 0.13.0

• d (smqtk.representation.DescriptorElement) – Descriptor element to
compute the neighbors of.

• n (int) – Number of nearest neighbors to find.

Returns Tuple of nearest N DescriptorElement instances, and a tuple of the distance values to
those neighbors.

Return type (tuple[smqtk.representation.DescriptorElement], tuple[float])

remove_from_index(uids)
Partially remove descriptors from this index associated with the given UIDs.

Parameters uids (collections.Iterable[collections.Hashable]) – Iter-
able of UIDs of descriptors to remove from this index.

Raises

• ValueError – No data available in the given iterable.

• KeyError – One or more UIDs provided do not match any stored descriptors. The
index should not be modified.

update_index(descriptors)
Additively update the current index with the one or more descriptor elements given.

If no index exists yet, a new one should be created using the given descriptors.

Raises ValueError – No data available in the given iterable.

Parameters descriptors (collections.Iterable[smqtk.representation
.DescriptorElement]) – Iterable of descriptor elements to add to this index.

ObjectDetector

This interface defines a method to generate object detections (DetectionElement) over a given DataElement.

class smqtk.algorithms.object_detection.ObjectDetector
Abstract interface to an object detection algorithm.

An object detection algorithm is one that can take in data and output zero or more detection elements, where
each detection represents a spatial region in the data.

This high level interface only requires detection element returns (spatial bounding-boxes with associated classi-
fication elements).

detect_objects(data_element, de_factory=<smqtk.representation.detection_element_factory.DetectionElementFactory
object>, ce_factory=<smqtk.representation.classification_element_factory.ClassificationElementFactory
object>)

Detect objects in the given data.

UUIDs of detections are based on the hash produced from the combination of:

• Detection bounding-box bounding coordinates

• Classification label set predicted for a bounding box.

Parameters

• data_element (smqtk.representation.DataElement) – Source data
from which to detect objects within.

26 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError

SMQTK Documentation, Release 0.13.0

• de_factory (smqtk.representation.DetectionElementFactory) –
Factory for generating DetectionElement instances. The default factory yields Mem-
oryClassificationElement instances.

• ce_factory (smqtk.representation.ClassificationElementFactory)
– Factory for generating ClassificationElement instances for detections. The default
factory yields MemoryClassificationElement instances.

Raises ValueError – Given data element content was not of a valid content type that this
class reports as valid for object detection.

Returns Iterator over result DetectionElement instances as generated by the given Detec-
tionElementFactory, containing classification elements as generated by the given Clas-
sificationElementFactory.

Return type collections.Iterable[smqtk.representation.DetectionElement]

RelevancyIndex

This interface defines two methods: build_index and rank. The build_index method is, like a
NearestNeighborsIndex, used to build an index of DescriptorElement instances. The rank method
takes examples of relevant and not-relevant DescriptorElement examples with which the algorithm uses to rank
(think sort) the indexed DescriptorElement instances by relevancy (on a [0, 1] scale).

class smqtk.algorithms.relevancy_index.RelevancyIndex
Abstract class for IQR index implementations.

Similar to a traditional nearest-neighbors algorithm, An IQR index provides a specialized nearest-neighbors
interface that can take multiple examples of positively and negatively relevant exemplars in order to produce a
[0, 1] ranking of the indexed elements by determined relevancy.

build_index(descriptors)
Build the index based on the given iterable of descriptor elements.

Subsequent calls to this method should rebuild the index, not add to it.

Raises ValueError – No data available in the given iterable.

Parameters descriptors (collections.Iterable[smqtk.
representation.DescriptorElement]) – Iterable of descriptor elements
to build index over.

count()

Returns Number of elements in this index.

Return type int

rank(pos, neg)
Rank the currently indexed elements given pos positive and neg negative exemplar descriptor elements.

Parameters

• pos (collections.Iterable[smqtk.representation.
DescriptorElement]) – Iterable of positive exemplar DescriptorElement
instances. This may be optional for some implementations.

• neg (collections.Iterable[smqtk.representation.
DescriptorElement]) – Iterable of negative exemplar DescriptorElement
instances. This may be optional for some implementations.

2.2. Algorithms 27

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

SMQTK Documentation, Release 0.13.0

Returns Map of indexed descriptor elements to a rank value between [0, 1] (inclusive) range,
where a 1.0 means most relevant and 0.0 meaning least relevant.

Return type dict[smqtk.representation.DescriptorElement, float]

2.2.2 Algorithm Models and Generation

Some algorithms require a model, of a pre-existing computed state, to function correctly. Not all algorithm interfaces
require that there is some model generation method as it is as times not appropriate or applicable to the definition of
the algorithm the interface is for. However some implementations of algorithms desire a model for some or all of its
functionality. Algorithm implementations that require extra modeling are responsible for providing a method or utility
for generating algorithm specific models. Some algorithm implementations may also be pre-packaged with one or
more specific models to optionally choose from, due to some performance, tuning or feasibility constraint. Explana-
tions about whether an extra model is required and how it is constructed should be detailed by the documentation for
that specific implementation.

For example, part of the definition of a NearestNeighborsIndex algorithm is that there is an index to search
over, which is arguably a model for that algorithm. Thus, the build_index()method, which should build the index
model, is part of that algorithm’s interface. Other algorithms, like the DescriptorGenerator class of algorithms,
do not have a high-level model building method, and model generation or choice is left to specific implementations to
explain or provide.

DescriptorGenerator Models

The DescriptorGenerator interface does not define a model building method, but some implementations require
internal models. Below are explanations on how to build or get modes for DescriptorGenerator implementa-
tions that require a model.

ColorDescriptor

ColorDescriptor implementations need to build a visual bag-of-words codebook model for reducing the dimensionality
of the many low-level descriptors detected in an input data element. Model parameters as well as storage location
parameters are specified at instance construction time, or via a configuration dictionary given to the from_config
class method.

The storage location parameters include a data model directory path and an intermediate data working directory path:
model_directory and work_directory respectively. The model_directory should be the path to a di-
rectory for storage of generated model elements. The work_directory should be the path to a directory to store
cached intermediate data. If model elements already exist in the provided model_directory, they are loaded at
construction time. Otherwise, the provided directory is used to store model components when the generate_model
method is called. Please reference the constructor’s doc-string for the description of other constructor parameters.

The method generate_model(data_set) is provided on instances, which should be given an iterable of
DataElement instances representing media that should be used for training the visual bag-of-words code-
book. Media content types that are supported by DescriptorGenerator instances is listed via the
valid_content_types() method.

Below is an example code snippet of how to train a ColorDescriptor model for some instance of a ColorDescriptor
implementation class and configuration:

Fill in "<flavor>" with a specific ColorDescriptor class.
cd = ColorDescriptor_<flavor>(model_directory="data", work_directory="work")

Assuming there is not model generated, the following call would fail due to
(continues on next page)

28 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

SMQTK Documentation, Release 0.13.0

(continued from previous page)

there not being a model loaded
cd.compute_descriptor(some_data, some_factory)

data_elements = [...] # Some iterable of DataElement instances to media content
Generates model components
cd.generate_model(data_elements)

Example of a new instance, given the same parameters, that will load the
existing model files in the provided ``model_directory``.
new_cd = ColorDescriptor_<flavor>(model_directory="data", work_directory="work")

Since there is a model, we can now compute descriptors for new data
new_cd.compute_descriptor(new_data, some_factory)

CaffeDefaultImageNet

This implementation does not come with a method of training its own models, but requires model files provided by
Caffe: the network model file and the image mean binary protobuf file.

The Caffe source tree provides two scripts to download the specific files (relative to the caffe source tree):

Downloads the network model file
scripts/download_model_binary.py models/bvlc_reference_caffenet

Downloads the ImageNet mean image binary protobuf file
data/ilsvrc12/get_ilsvrc_aux.sh

These script effectively just download files from a specific source.

If the Caffe source tree is not available, the model files can be downloaded from the following URLs:

• Network model: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

• Image mean: http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz

NearestNeighborsIndex Models (k nearest-neighbors)

NearestNeighborsIndex interfaced classes include a build_index method on instances that should build
the index model for an implementation. Implementations, if they allow for persistant storage, should take relevant pa-
rameters at construction time. Currently, we do not package an implementation that require additional model creation.

The general pattern for NearestNeighborsIndex instance index model generation:

descriptors = [...] # some number of descriptors to index

index = NearestNeighborsIndexImpl(...)
Calling ``nn`` should fail before an index has been built.

index.build_index(descriptors)

q = DescriptorElementImpl(...)
neighbors, dists = index.nn(q)

2.2. Algorithms 29

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz

SMQTK Documentation, Release 0.13.0

RelevancyIndex Models

RelevancyIndex interfaced classes include a build_index method in instances that should build the index
model for a particular implementation. Implementations, if they allow for persistant storage, should take relevant
parameters at construction time. Currently, we do not package an implementation that requires additional model
creation.

The general pattern for RelevancyIndex instance index model generation:

descriptors = [...] # some number of descriptors to index

index = RelevancyIndexImpl(...)
Calling ``rank`` should fail before an index has been built.

index.build_index(descriptors)

rank_map = index.rank(pos_descriptors, neg_descriptors)

2.3 Web Service and Demonstration Applications

Included in SMQTK are a few web-based service and demonstration applications, providing a view into the function-
ality provided by SMQTK algorithms and utilities.

2.3.1 runApplication

This script can be used to run any conforming (derived from SmqtkWebApp) SMQTK web based application. Web
services should be runnable via the bin/runApplication.py script.

Runs conforming SMQTK Web Applications.

usage: runApplication [-h] [-v] [-c PATH] [-g PATH] [-l] [-a APPLICATION] [-r]
[-t] [--host HOST] [--port PORT] [--use-basic-auth]
[--debug-server] [--debug-smqtk]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

30 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

Application Selection

-l, --list List currently available applications for running. More description is included if
SMQTK verbosity is increased (-v | –debug-smqtk)

Default: False

-a, --application Label of the web application to run.

Server options

-r, --reload Turn on server reloading.

Default: False

-t, --threaded Turn on server multi-threading.

Default: False

--host Run host address specification override. This will override all other configuration
method specifications.

--port Run port specification override. This will override all other configuration method
specifications.

--use-basic-auth Use global basic authentication as configured.

Default: False

Other options

--debug-server Turn on server debugging messages ONLY

Default: False

--debug-smqtk Turn on SMQTK debugging messages ONLY

Default: False

2.3.2 SmqtkWebApp

This is the base class for all web applications and services in SMQTK.

class smqtk.web.SmqtkWebApp(json_config)
Base class for SMQTK web applications

classmethod from_config(config_dict, merge_default=True)
Override to just pass the configuration dictionary to constructor

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it
doesn’t make sense to store some object constructor parameters are expected to be supplied at as con-
figuration values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those
parameters out. In such cases, the object’s from_config class-method would also take additional po-
sitional arguments to fill in for the parameters that this returned configuration lacks.

2.3. Web Service and Demonstration Applications 31

SMQTK Documentation, Release 0.13.0

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for
generating what the configuration dictionary would look like for this class without instantiating it.

This should be overridden in each implemented application class to add appropriate configuration.

Returns Default configuration dictionary for the class.

Return type dict

classmethod impl_directory()

Returns Directory in which this implementation is contained.

Return type str

run(host=None, port=None, debug=False, **options)
Override of the run method, drawing running host and port from configuration by default. ‘host’ and
‘port’ values specified as argument or keyword will override the app configuration.

2.3.3 Sample Web Applications

Descriptor Similarity Service

• Provides a web-accessible API for computing content descriptor vectors for available descriptor generator labels.

• Descriptor generators that are available to the service are based on the a configuration file provided to the server.

class smqtk.web.descriptor_service.DescriptorServiceServer(json_config)
Simple server that takes in a specification of the following form:

/<descriptor_type>/<uri>[?. . .]

See the docstring for the compute_descriptor() method for complete rules on how to form a calling
URL.

Computes the requested descriptor for the given file and returns that via a JSON structure.

Standard return JSON:

{
"success": <bool>,
"descriptor": [<float>, ...]
"message": <string>,
"reference_uri": <uri>

}

Additional Configuration

Note: We will look for an environment variable DescriptorService_CONFIG for a string file path to an addi-
tional JSON configuration file to consider.

generate_descriptor(de, cd_label)
Generate a descriptor for the content pointed to by the given URI using the specified descriptor generator.

Raises

32 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

SMQTK Documentation, Release 0.13.0

• ValueError – Content type mismatch given the descriptor generator

• RuntimeError – Descriptor extraction failure.

Returns Generated descriptor element instance with vector information.

Return type smqtk.representation.DescriptorElement

generator_label_configs = None

Type dict[str, dict]

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it
doesn’t make sense to store some object constructor parameters are expected to be supplied at as con-
figuration values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those
parameters out. In such cases, the object’s from_config class-method would also take additional po-
sitional arguments to fill in for the parameters that this returned configuration lacks.

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for
generating what the configuration dictionary would look like for this class without instantiating it.

Returns Default configuration dictionary for the class.

Return type dict

get_descriptor_inst(label)
Get the cached content descriptor instance for a configuration label :type label: str :rtype:
smqtk.descriptor_generator.DescriptorGenerator

classmethod is_usable()
Check whether this class is available for use.

Since certain plugin implementations may require additional dependencies that may not yet be available
on the system, this method should check for those dependencies and return a boolean saying if the imple-
mentation is usable.

NOTES:

• This should be a class method

• When an implementation is deemed not usable, this should emit a warning detailing why
the implementation is not available for use.

Returns Boolean determination of whether this implementation is usable.

Return type bool

resolve_data_element(uri)
Given the URI to some data, resolve it down to a DataElement instance.

Raises ValueError – Issue with the given URI regarding either URI source resolution or
data resolution.

Parameters uri (str) – URI to data

2.3. Web Service and Demonstration Applications 33

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

SMQTK Documentation, Release 0.13.0

Returns DataElement instance wrapping given URI to data.

Return type smqtk.representation.DataElement

IQR Demo Application

Interactive Query Refinement or “IQR” is a process whereby a user provides one or more exemplar images and the
system attempts to locate additional images from within an archive that a similar to the exemplar(s). The user then
adjudicates the results by identifying those results that match their search and those results that do not. The system
then uses those adjudications to attempt to provide better, more closely matching results refined by the user’s input.

Fig. 1: SMQTK IQR Workflow
Overall workflow of an SMQTK based Interactive Query Refinement application.

The IQR application is an excellent example application for SMQTK as it makes use of a broad spectrum
of SMQTK’s capabilities. In order to characterize each image in the archive so that it can be indexed, the
DescriptorGenerator algorithm is used. A NearestNeighborsIndex algorithm is used to understand
the relationship between the images in the archive and a RelevancyIndex algorithm is used to rank results based
on the user’s positive and negative adjudications.

SMQTK comes with a pair of web-based application that implements an IQR system using SMQTK’s services as
shown in the SMQTK IQR Workflow figure.

Running the IQR Application

The SMQTK IQR demonstration application consists of two web services: one for hosting the models and processing
for an archive, and a second for providing a user-interface to one or more archives.

34 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

In order to run the IQR demonstration application, we will need an archive of imagery. SMQTK has facilities for
creating indexes that support 10’s or even 100’s or 1000’s of images. For demonstration purposes, we’ll use a modest
archive of images. The Leeds Butterfly Dataset will serve quite nicely. Download and unzip the archive (which
contains over 800 images of different species of butterflies).

SMQTK comes with a script, iqr_app_model_generation, that computes the descriptors on all of the images
in your archive and builds up the models needed by the NearestNeighborsIndex and RelevancyIndex
algorithms.

usage: iqr_app_model_generation [-h] [-v] -c PATH PATH -t TAB GLOB [GLOB ...]

Positional Arguments

GLOB Shell glob to files to add to the configured data set.

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

-c, --config Path to the JSON configuration files. The first file provided should be the config-
uration file for the IqrSearchDispatcher web-application and the second
should be the configuration file for the IqrService web-application.

-t, --tab The configuration “tab” of the IqrSearchDispatcher configuration to use.
This informs what dataset to add the input data files to.

The -c/--config option should be given the 2 paths to the configuration files for the IqrSearchDispatcher
and IqrService web services respectively. These provide the configuration blocks for each of the SMQTK algo-
rithms (DescriptorGenerator, NearestNeighborIndex, etc.) required to generate the models and indices
that will be required by the application. For convenience, the same configuration files will be provided to the web
applications when they are run later.

The SMQTK source repository contains sample configuration files for both the IqrSearchDispatcher
and IqrService services. They can be found at source/python/smqtk/web/search_app/
sample_configs/config.IqrSearchApp.json and source/python/smqtk/web/search_app/
sample_configs/config.IqrRestService.json respectively. The iqr_app_model_generation
script is designed to run from an empty directory and will create the sub-directories specified in the above configura-
tions requires when run.

Since these configuration files drive both the generation of the models and the web applications themselves, a closer
examination is in order.

Present in both configuration files are the flask_app and server sections which control Flask web server appli-
cation parameters. The config.IqrSearchApp.json contains the additional section mongo that configures the
MongoDB server the UI service uses for storing user session information.

1 {
2 "flask_app": {
3 "BASIC_AUTH_PASSWORD": "demo",
4 "BASIC_AUTH_USERNAME": "demo",
5 "SECRET_KEY": "MySuperUltraSecret"
6 },
7 "server": {
8 "host": "127.0.0.1",

(continues on next page)

2.3. Web Service and Demonstration Applications 35

http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/
http://www.mongodb.org

SMQTK Documentation, Release 0.13.0

(continued from previous page)

9 "port": 5000
10 },
11 "mongo": {
12 "database": "smqtk",
13 "server": "127.0.0.1:27017"
14 },
15 "iqr_tabs": {
16 "LEEDS Butterflies": {
17 "working_directory": "workdir",
18 "data_set": {
19 "DataMemorySet": {
20 "cache_element": {
21 "DataFileElement": {
22 "explicit_mimetype": null,
23 "filepath": "workdir/butterflies_alexnet_fc7/data.

→˓memorySet.cache",
24 "readonly": false
25 },
26 "type": "DataFileElement"
27 },
28 "pickle_protocol": -1
29 },
30 "type": "DataMemorySet"
31 },
32 "iqr_service_url": "http://localhost:5001"
33 }
34 }
35 }

The config.IqrSerchApp.json configuration has an additional block “iqr_tabs” (line 15). This defines the
different archives, and matching IQR REST service describing that archive, the UI is to provide an interface for. In
our case there will be only one entry, “LEEDS Butterflies” (line 16), representing the archive that we are currently
building. This section describes the data-set container that contains the archive imagery to show in the UI (line 18) as
well as the URL to the RESTful service providing the IQR functions for the archive (line 32).

In the config.IqrRestService.json configuration file (shown below) we see the specification of the al-
gorithm and representation plugins the RESTful IQR service app will use under iqr_service -> plugins.
Each of these of these blocks is passed to the SMQTK plugin system to create the appropriate instances of
the algorithm or data representation in question. The blocks located at lines 35, 66, and 147 configure the
three main algorithms used by the application: the descriptor generator, the nearest neighbors index, and the
relevancy index. For example the nn_index block that starts at line 66 specifies two different implementa-
tions: FlannNearestNeighborsIndex, which uses the Flann library, and LSHNearestNeighborIndex,
configured to use the Iterative Quantization hash function (paper). The type element on line 135 selects the
LSHNearestNeighborIndex to be used for this configuration.

(jump past configuration display)

1 {
2 "flask_app": {
3 "BASIC_AUTH_PASSWORD": "demo",
4 "BASIC_AUTH_USERNAME": "demo",
5 "SECRET_KEY": "MySuperUltraSecret"
6 },
7 "server": {
8 "host": "127.0.0.1",
9 "port": 5001

(continues on next page)

36 Chapter 2. SMQTK Architecture Overview

http://www.cs.ubc.ca/research/flann/
http://www.cs.unc.edu/~lazebnik/publications/cvpr11_small_code.pdf

SMQTK Documentation, Release 0.13.0

(continued from previous page)

10 },
11 "iqr_service": {
12 "plugins": {
13 "classification_factory": {
14 "MemoryClassificationElement": {},
15 "type": "MemoryClassificationElement"
16 },
17 "classifier_config": {
18 "LibSvmClassifier": {
19 "normalize": 2,
20 "svm_label_map_uri": null,
21 "svm_model_uri": null,
22 "train_params": {
23 "-b": 1,
24 "-c": 2,
25 "-s": 0,
26 "-t": 0
27 }
28 },
29 "type": "LibSvmClassifier"
30 },
31 "descriptor_factory": {
32 "DescriptorMemoryElement": {},
33 "type": "DescriptorMemoryElement"
34 },
35 "descriptor_generator": {
36 "CaffeDescriptorGenerator": {
37 "batch_size": 128,
38 "data_layer": "data",
39 "gpu_device_id": 0,
40 "image_mean_uri": "~/dev/caffe/source/data/ilsvrc12/imagenet_mean.

→˓binaryproto",
41 "input_scale": null,
42 "load_truncated_images": false,
43 "network_is_bgr": true,
44 "network_model_uri": "~/dev/caffe/source/models/bvlc_alexnet/bvlc_

→˓alexnet.caffemodel",
45 "network_prototxt_uri": "~/dev/caffe/source/models/bvlc_alexnet/

→˓deploy.prototxt",
46 "pixel_rescale": null,
47 "return_layer": "fc7",
48 "use_gpu": true
49 },
50 "type": "CaffeDescriptorGenerator"
51 },
52 "descriptor_index": {
53 "MemoryDescriptorIndex": {
54 "cache_element": {
55 "DataFileElement": {
56 "explicit_mimetype": null,
57 "filepath": "workdir/butterflies_alexnet_fc7/descriptor_

→˓index.pickle",
58 "readonly": false
59 },
60 "type": "DataFileElement"
61 },
62 "pickle_protocol": -1

(continues on next page)

2.3. Web Service and Demonstration Applications 37

SMQTK Documentation, Release 0.13.0

(continued from previous page)

63 },
64 "type": "MemoryDescriptorIndex"
65 },
66 "neighbor_index": {
67 "FlannNearestNeighborsIndex": {
68 "autotune": false,
69 "descriptor_cache_uri": "workdir/butterflies_alexnet_fc7/flann/

→˓index.cache",
70 "distance_method": "hik",
71 "index_uri": "workdir/butterflies_alexnet_fc7/flann/index.flann",
72 "parameters_uri": "workdir/butterflies_alexnet_fc7/flann/index.

→˓parameters",
73 "random_seed": 42
74 },
75 "LSHNearestNeighborIndex": {
76 "descriptor_index": {
77 "MemoryDescriptorIndex": {
78 "cache_element": {
79 "DataFileElement": {
80 "explicit_mimetype": null,
81 "filepath": "workdir/butterflies_alexnet_fc7/

→˓descriptor_index.pickle",
82 "readonly": false
83 },
84 "type": "DataFileElement"
85 },
86 "pickle_protocol": -1
87 },
88 "type": "MemoryDescriptorIndex"
89 },
90 "distance_method": "cosine",
91 "hash2uuids_kvstore": {
92 "MemoryKeyValueStore": {
93 "cache_element": {
94 "DataFileElement": {
95 "explicit_mimetype": null,
96 "filepath": "workdir/butterflies_alexnet_fc7/

→˓hash2uuids.mem_kvstore.pickle",
97 "readonly": false
98 },
99 "type": "DataFileElement"

100 }
101 },
102 "type": "MemoryKeyValueStore"
103 },
104 "hash_index": {
105 "type": null
106 },
107 "hash_index_comment": "'hash_index' may also be null to default

→˓to a linear index built at query time.",
108 "lsh_functor": {
109 "ItqFunctor": {
110 "bit_length": 64,
111 "itq_iterations": 50,
112 "mean_vec_cache": {
113 "DataFileElement": {
114 "explicit_mimetype": null,

(continues on next page)

38 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

(continued from previous page)

115 "filepath": "workdir/butterflies_alexnet_fc7/
→˓itqnn/mean_vec.npy",

116 "readonly": false
117 },
118 "type": "DataFileElement"
119 },
120 "normalize": null,
121 "random_seed": 42,
122 "rotation_cache": {
123 "DataFileElement": {
124 "explicit_mimetype": null,
125 "filepath": "workdir/butterflies_alexnet_fc7/

→˓itqnn/rotation.npy",
126 "readonly": false
127 },
128 "type": "DataFileElement"
129 }
130 },
131 "type": "ItqFunctor"
132 },
133 "read_only": false
134 },
135 "type": "LSHNearestNeighborIndex"
136 },
137 "relevancy_index_config": {
138 "LibSvmHikRelevancyIndex": {
139 "autoneg_select_ratio": 1,
140 "cores": null,
141 "descr_cache_filepath": null,
142 "multiprocess_fetch": false
143 },
144 "type": "LibSvmHikRelevancyIndex"
145 }
146 },
147 "session_control": {
148 "positive_seed_neighbors": 500,
149 "session_expiration": {
150 "check_interval_seconds": 30,
151 "enabled": false,
152 "session_timeout": 3600
153 }
154 }
155 }
156 }

Once you have the configuration file set up the way that you like it, you can generate all of the models and indexes
required by the application by running the following command:

iqr_app_model_generation \
-c config.IqrSearchApp.json config.IqrRestService.json \
-t "LEEDS Butterflies" /path/to/butterfly/images/*.jpg

This will generate descriptors for all of the images in the data set and use them to compute the models and indices we
configured, outputting to the files under the workdir directory in your current directory.

Once it completes, you can run the IqrSearchApp and IqrService web-apps. You’ll need an instance of
MongoDB running on the port and host address specified by the mongo element on line 13 in your config.

2.3. Web Service and Demonstration Applications 39

SMQTK Documentation, Release 0.13.0

IqrSearchApp.json configuration file. You can start a Mongo instance (presuming you have it installed) with:

mongod --dbpath /path/to/mongo/data/dir

Once Mongo has been started you can start the IqrSearchApp and IqrService services with the following
commands in separate terminals:

Terminal 1
runApplication -a IqrService -c config.IqrRestService.json

Terminal 2
runApplication -a IqrSearchDispatcher -c config.IqrSearchApp.json

After the services have been started, open a web browser and navigate to http://localhost:5000. Click lick on
the login button in the upper-right and then enter the credentials specified in the default login settings file source/
python/smqtk/web/search_app/modules/login/users.json.

Fig. 2: Click on the login element to enter your credentials

Fig. 3: Enter demo credentials

Once you’ve logged in you will be able to select the LEEDS Butterfly link. This link was named by line 16 in the
config.IqrSearchApp.json configuration file. The iqr_tabs mapping allows you to configure interfacing
with different IQR REST services providing different combinations of the required algorithms – useful for example,
if you want to compare the performance of different descriptors or nearest-neighbor index algorithms.

40 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

Fig. 4: Select the “LEEDS Butterflies” link to begin working with the application

To begin the IQR process drag an exemplar image to the grey load area (marked 1 in the next figure). In this case
we’ve uploaded a picture of a Monarch butterfly (2). Once uploaded, click the Initialize Index button (3)
and the system will return a set of images that it believes are similar to the exemplar image based on the descriptor
computed.

The next figure shows the set of images returned by the system (on the left) and a random selection of images from
the archive (by clicking the Toggle Random Results element). As you can see, even with just one exemplar the
system is beginning to learn to return Monarch butterflies (or butterflies that look like Monarchs)

At this point you can begin to refine the query. You do this by marking correct returns at their checkbox and incorrect
returns at the “X”. Once you’ve marked a number of returns, you can select the “Refine” element which will use your
adjudications to retrain and rerank the results with the goal that you will increasingly see correct results in your result
set.

You can continue this process for as long as you like until you are satisfied with the results that the query is returning.
Once you are happy with the results, you can select the Save IQR State button. This will save a file that contains
all of the information requires to use the results of the IQR query as an image classifier. The process for doing this is
described in the next session.

Using an IQR Trained Classifier

Before you can use your IQR session as a classifier, you must first train the classifier model from the IQR session state.
You can do this with the iqrTrainClassifier tool:

usage: iqrTrainClassifier [-h] [-v] [-c PATH] [-g PATH] [-i IQR_STATE]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

-i, --iqr-state Path to the ZIP file saved from an IQR session.

2.3. Web Service and Demonstration Applications 41

SMQTK Documentation, Release 0.13.0

Fig. 5: IQR Initilization

Fig. 6: Initial Query Results and Random Results

42 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

Fig. 7: Query Refinement

2.3. Web Service and Demonstration Applications 43

SMQTK Documentation, Release 0.13.0

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

As with other tools from SMQTK the configuration file is a JSON file. An default configuration file may be generated
by calling iqrTrainClassifier -g example.json, but pre-configured example file can be found here and
is shown below:

1 {
2 "classifier": {
3 "LibSvmClassifier": {
4 "normalize": 2,
5 "svm_label_map_uri": "workdir/iqr_classifier/label_map",
6 "svm_model_uri": "workdir/iqr_classifier/model",
7 "train_params": {
8 "-b": 1,
9 "-c": 2,

10 "-s": 0,
11 "-t": 0
12 }
13 },
14 "type": "LibSvmClassifier"
15 }
16 }

The above configuration specifies the classifier that will be used, in this case the LibSvmClassifier. Let us as-
sume the IQR session state was downloaded as monarch.IqrState. The following command will train a classifier
leveraging the descriptors labeled by the IQR session that was saved:

iqrTrainClassifier.py -c config.iqrTrainClassifier.json -i monarch.IqrState

Once you have trained the classifier, you can use the classifyFiles command to actually classify a set of files.

usage: smqtk-classify-files [-h] [-v] [-c PATH] [-g PATH] [--overwrite]
[-l LABEL]
[GLOB [GLOB ...]]

Positional Arguments

GLOB Series of shell globs specifying the files to classify.

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

44 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

Classification

--overwrite When generating a configuration file, overwrite an existing file.

Default: False

-l, --label The class to filter by. This is based on the classifier configuration/model used.
If this is not provided, we will list the available labels in the provided classifier
configuration.

Again, we need to provide a JSON configuration file for the command. As with iqrTrainClassifier, there is a
sample configuration file in the repository:

1 {
2 "classification_factory": {
3 "MemoryClassificationElement": {},
4 "type": "MemoryClassificationElement"
5 },
6 "classifier": {
7 "LibSvmClassifier": {
8 "normalize": 2,
9 "svm_label_map_uri": "workdir/iqr_classifier/label_map",

10 "svm_model_uri": "workdir/iqr_classifier/model",
11 "train_params": {
12 "-b": 1,
13 "-c": 2,
14 "-s": 0,
15 "-t": 0
16 }
17 },
18 "type": "LibSvmClassifier"
19 },
20 "descriptor_factory": {
21 "DescriptorMemoryElement": {},
22 "type": "DescriptorMemoryElement"
23 },
24 "descriptor_generator": {
25 "CaffeDescriptorGenerator": {
26 "batch_size": 128,
27 "data_layer": "data",
28 "gpu_device_id": 0,
29 "image_mean_uri": "~/dev/caffe/source/data/ilsvrc12/imagenet_mean.

→˓binaryproto",
30 "input_scale": null,
31 "load_truncated_images": false,
32 "network_is_bgr": true,
33 "network_model_uri": "~/dev/caffe/source/models/bvlc_alexnet/bvlc_alexnet.

→˓caffemodel",
34 "network_prototxt_uri": "~/dev/caffe/source/models/bvlc_alexnet/deploy.

→˓prototxt",
35 "pixel_rescale": null,
36 "return_layer": "fc7",
37 "use_gpu": true

(continues on next page)

2.3. Web Service and Demonstration Applications 45

SMQTK Documentation, Release 0.13.0

(continued from previous page)

38 },
39 "type": "CaffeDescriptorGenerator"
40 }
41 }

Note that the classifier block on lines 7-18 is the same as the classifier block in the
iqrTrainClassfier configuration file. Further, the descriptor_generator block on lines 25-39 matches
the descriptor generator used for the IQR application itself (thus matching the type of descriptor used to train the
classifier).

Once you’ve set up the configuration file to your liking, you can classify a set of labels with the following command:

smqtk-classify-files -c config.classifyFiles.json -l positive /path/to/butterfly/
→˓images/*.jpg

If you leave the -l argument, the command will tell you the labels available with the classifier (in this case positive
and negative).

SMQTK’s smqtk-classify-files tool can use this saved IQR state to classify a set of files (not necessarily the
files in your IQR Applicaiton ingest). The command has the following form:

2.4 Utilities and Applications

Also part of SMQTK are support utility modules, utility scripts (effectively the “binaries”) and service-oriented and
demonstration web applications.

2.4.1 Utility Modules

Various unclassified functionality intended to support the primary goals of SMQTK. See doc-string comments on
sub-module classes and functions in [smqtk.utils](/python/smqtk/utils) module.

2.4.2 Utility Scripts

Located in the [smqtk.bin](/python/smqtk/bin) module are various scripts intended to provide quick access or
generic entry points to common SMQTK functionality. These scripts generally require configuration via a JSON text
file and executable entry points are installed via the setup.py. By rule of thumb, scripts that require a configuration
also provide an option for outputting a default or example configuration file.

Currently available utility scripts in alphabetical order:

classifier_kfold_validation

Helper utility for cross validating a supervised classifier configuration. The classifier used should NOT be configured
to save its model since this process requires us to train the classifier multiple times.

• plugins

– supervised_classifier Supervised Classifier implementation configuration to use. This should not
be set to use a persistent model if able (this utility will repeatedly train a new model for each
fold).

– descriptor_index Index to draw descriptors to classify from.

46 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

• cross_validation

– truth_labels Path to a CSV file containing descriptor UUID the truth label associations. This de-
fines what descriptors are used from the given index. We error if any descriptor UUIDs listed
here are not available in the given descriptor index. This file should be in [uuid, label] column
format.

– num_folds Number of folds to make for cross validation.

– random_seed Optional fixed seed for the

– classification_use_multiprocessing If we should use multiprocessing (vs threading) when classi-
fying elements.

• pr_curves

– enabled If Precision/Recall plots should be generated.

– show If we should attempt to show the graph after it has been generated (matplotlib).

– output_directory Directory to save generated plots to. If None, we will not save plots. Otherwise
we will create the directory (and required parent directories) if it does not exist.

– file_prefix String prefix to prepend to standard plot file names.

• roc_curves

– enabled If ROC curves should be generated

– show If we should attempt to show the plot after it has been generated (matplotlib).

– output_directory Directory to save generated plots to. If None, we will not save plots. Otherwise
we will create the directory (and required parent directories) if it does not exist.

– file_prefix String prefix to prepend to standard plot file names.

usage: classifier_kfold_validation [-h] [-v] [-c PATH] [-g PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

classifier_model_validation

Utility for validating a given classifier implementation’s model against some labeled testing data, outputting PR and
ROC curve plots with area-under-curve score values.

This utility can optionally be used train a supervised classifier model if the given classifier model configuration does
not exist and a second CSV file listing labeled training data is provided. Training will be attempted if train is

2.4. Utilities and Applications 47

SMQTK Documentation, Release 0.13.0

set to true. If training is performed, we exit after training completes. A SupervisedClassifier sub-classing
implementation must be configured

We expect the test and train CSV files in the column format:

. . . <UUID>,<label> . . .

The UUID is of the descriptor to which the label applies. The label may be any arbitrary string value, but all labels
must be consistent in application.

Some metrics presented assume the highest confidence class as the single predicted class for an element:

• confusion matrix

The output UUID confusion matrix is a JSON dictionary where the top-level keys are the true labels, and the inner
dictionary is the mapping of predicted labels to the UUIDs of the classifications/descriptors that yielded the prediction.
Again, this is based on the maximum probability label for a classification result (T=0.5).

See Scikit-Learn PR and ROC curve explanations and examples:

• http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

• http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

usage: classifier_model_validation [-h] [-v] [-c PATH] [-g PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

classifyFiles

Based on an input, trained classifier configuration, classify a number of media files, whose descriptor is computed by
the configured descriptor generator. Input files that classify as the given label are then output to standard out. Thus,
this script acts like a filter.

usage: classifyFiles [-h] [-v] [-c PATH] [-g PATH] [--overwrite] [-l LABEL]
[GLOB [GLOB ...]]

Positional Arguments

GLOB Series of shell globs specifying the files to classify.

48 Chapter 2. SMQTK Architecture Overview

http://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

SMQTK Documentation, Release 0.13.0

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

Classification

--overwrite When generating a configuration file, overwrite an existing file.

Default: False

-l, --label The class to filter by. This is based on the classifier configuration/model used.
If this is not provided, we will list the available labels in the provided classifier
configuration.

compute_classifications

Script for asynchronously computing classifications for DescriptorElements in a DescriptorIndex specified via a list of
UUIDs. Results are output to a CSV file in the format:

uuid, label1_confidence, label2_confidence, . . .

CSV columns labels are output to the given CSV header file path. Label columns will be in the order as reported by
the classifier implementations get_labels method.

Due to using an input file-list of UUIDs, we require that the UUIDs of indexed descriptors be strings, or equality
comparable to the UUIDs’ string representation.

usage: compute_classifications [-h] [-v] [-c PATH] [-g PATH]
[--uuids-list PATH] [--csv-header PATH]
[--csv-data PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

2.4. Utilities and Applications 49

SMQTK Documentation, Release 0.13.0

Input Output Files

--uuids-list Path to the input file listing UUIDs to process.

--csv-header Path to the file to output column header labels.

--csv-data Path to the file to output the CSV data to.

compute_hash_codes

Compute LSH hash codes based on the provided functor on all or specific descriptors from the configured index given
a file-list of UUIDs.

When using an input file-list of UUIDs, we require that the UUIDs of indexed descriptors be strings, or equality
comparable to the UUIDs’ string representation.

We update a key-value store with the results of descriptor hash computation. We assume the keys of the store are
the integer hash values and the values of the store are frozenset instances of descriptor UUIDs (hashable-type
objects). We also assume that no other source is concurrently modifying this key-value store due to the need to modify
the values of keys.

usage: compute_hash_codes [-h] [-v] [-c PATH] [-g PATH] [--uuids-list PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

I/O

--uuids-list Optional path to a file listing UUIDs of descriptors to computed hash codes for.
If not provided we compute hash codes for all descriptors in the configured de-
scriptor index.

compute_many_descriptors

Descriptor computation helper utility. Checks data content type with respect to the configured descriptor generator to
skip content that does not match the accepted types. Optionally, we can additionally filter out image content whose
image bytes we cannot load via PIL.Image.open.

usage: compute_many_descriptors [-h] [-v] [-c PATH] [-g PATH] [-b INT]
[--check-image] [-f PATH] [-p PATH]

50 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

-b, --batch-size Number of files to batch together into a single compute async call. This defines
the granularity of the checkpoint file in regards to computation completed. If
given 0, we do not batch and will perform a single compute_async call on the
configured generator. Default batch size is 0.

Default: 0

--check-image If se should check image pixel loading before queueing an input image for pro-
cessing. If we cannot load the image pixels via PIL.Image.open, the input
image is not queued for processing

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

Required Arguments

-f, --file-list Path to a file that lists data file paths. Paths in this file may be relative, but will at
some point be coerced into absolute paths based on the current working directory.

-p, --completed-files Path to a file into which we add CSV format lines detailing filepaths that have
been computed from the file-list provided, as the UUID for that data (currently
the SHA1 checksum of the data).

computeDescriptor

Compute a descriptor vector for a given data file, outputting the generated feature vector to standard out, or to an
output file if one was specified (in numpy format).

usage: computeDescriptor [-h] [-v] [-c PATH] [-g PATH] [--overwrite]
[-o OUTPUT_FILEPATH]
[input_file]

Positional Arguments

input_file Data file to compute descriptor on

2.4. Utilities and Applications 51

SMQTK Documentation, Release 0.13.0

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

--overwrite Force descriptor computation even if an existing descriptor vector was discovered
based on the given content descriptor type and data combination.

Default: False

-o, --output-filepath Optional path to a file to output feature vector to. Otherwise the feature vector
is printed to standard out. Output is saved in numpy binary format (.npy suffix
recommended).

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

createFileIngest

Add a set of local system files to a data set via explicit paths or shell-style glob strings.

usage: createFileIngest [-h] [-v] [-c PATH] [-g PATH] [GLOB [GLOB ...]]

Positional Arguments

GLOB

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

52 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

descriptors_to_svmtrainfile

Utility script to transform a set of descriptors, specified by UUID, with matching class labels, to a test file usable by
libSVM utilities for train/test experiments.

The input CSV file is assumed to be of the format:

uuid,label . . .

This is the same as the format requested for other scripts like classifier_model_validation.py.

This is very useful for searching for -c and -g parameter values for a training sample of data using the tools/grid.
py script, found in the libSVM source tree. For example:

<smqtk_source>/TPL/libsvm-3.1-custom/tools/grid.py -log2c -5,15,2 -log2c 3,-15,-2 -v 5 -out lib-
svm.grid.out -png libsvm.grid.png -t 0 -w1 3.46713615023 -w2 12.2613240418 output_of_this_script.txt

usage: descriptors_to_svmtrainfile [-h] [-v] [-c PATH] [-g PATH] [-f PATH]
[-o PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

IO Options

-f Path to the csv file mapping descriptor UUIDs to their class label. String labels
are transformed into integers for libSVM. Integers start at 1 and are applied in the
order that labels are seen in this input file.

-o Path to the output file to write libSVM labeled descriptors to.

generate_image_transform

Utility for transforming an input image in various standardized ways, saving out those transformed images with stan-
dard namings. Transformations used are configurable via a configuration file (JSON).

Configuration details: {

”crop”: {

“center_levels”: null | int # If greater than 0, crop out one or more increasing smaller im-
ages # from a base image by cutting off increasingly larger portions of # the outside
perimeter. Cropped image dimensions determined by the # dimensions of the base im-
age and the number of crops to generate.

2.4. Utilities and Applications 53

SMQTK Documentation, Release 0.13.0

”quadrant_pyramid_levels”: null | int # If greater than 0, generate a number of crops
based on a number of # quad-tree partitions made based on the given number of levels.
Partitions for all levels less than the level provides are also # made.

”tile_shape”: null | [width, height] # If not null and is a list of two integers, crop out tile
windows # from the base image that have the width and height specified. # If the image
width or height is not evenly divisible by the tile # width or height, respectively, then
the crop out as many tiles as # neatly fit starting from the axis origin. The remaining
pixels are # ignored.

”tile_stride”: null | [x, y] # If not null and is a list of two integers, crop out sub-images of #
the above width and height (if given) with this stride. When not # this is not provided,
the default stride is the same as the tile # width and height.

},

”brightness_levels”: null | int # Generate a number of images with different brightness levels using #
linear interpolation to choose levels between 0 (black) and 1 # (original image) as well as between
1 and 2. # Results will not include contrast level 0, 1 or 2 images.

”contrast_levels”: null | int # Generate a number of images with different contrast levels using # linear
interpolation to choose levels between 0 (black) and 1 # (original image) as well as between 1 and
2. # Results will not include contrast level 0, 1 or 2 images.

}

usage: generate_image_transform [-h] [-v] [-c PATH] [-g PATH] [-i IMAGE]
[-o OUTPUT]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

Input/Output

-i, --image Image to produce transformations for.

-o, --output Directory to output generated images to. By default, if not told otherwise, we
will write output images in the same directory as the source image. Output im-
ages share a core filename as the source image, but with extra suffix syntax to
differentiate produced images from the original. Output images will share the
same image extension as the source image.

54 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

iqr_app_model_generation

Train and generate models for the SMQTK IQR Application.

This application takes the same configuration file as the IqrService REST service. To generate a default configuration,
please refer to the runApplication tool for the IqrService application:

runApplication -a IqrService -g config.IqrService.json

usage: iqr_app_model_generation [-h] [-v] -c PATH PATH -t TAB GLOB [GLOB ...]

Positional Arguments

GLOB Shell glob to files to add to the configured data set.

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

-c, --config Path to the JSON configuration files. The first file provided should be the config-
uration file for the IqrSearchDispatcher web-application and the second
should be the configuration file for the IqrService web-application.

-t, --tab The configuration “tab” of the IqrSearchDispatcher configuration to use.
This informs what dataset to add the input data files to.

iqrTrainClassifier

Train a supervised classifier based on an IQR session state dump.

Descriptors used in IQR, and thus referenced via their UUIDs in the IQR session state dump, must exist external to
the IQR web-app (uses a non-memory backend). This is needed so that this script might access them for classifier
training.

Click the “Save IQR State” button to download the IqrState file encapsulating the descriptors of positively and nega-
tively marked items. These descriptors will be used to train the configured SupervisedClassifier.

usage: iqrTrainClassifier [-h] [-v] [-c PATH] [-g PATH] [-i IQR_STATE]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

-i, --iqr-state Path to the ZIP file saved from an IQR session.

Configuration

-c, --config Path to the JSON configuration file.

2.4. Utilities and Applications 55

SMQTK Documentation, Release 0.13.0

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

make_balltree

Script for building and saving the model for the SkLearnBallTreeHashIndex implementation of HashIndex.

usage: make_balltree [-h] [-v] [-c PATH] [-g PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

minibatch_kmeans_clusters

Script for generating clusters from descriptors in a given index using the mini-batch KMeans implementation from
Scikit-learn (http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html).

By the nature of Scikit-learn’s MiniBatchKMeans implementation, euclidean distance is used to measure distance
between descriptors.

usage: minibatch_kmeans_clusters [-h] [-v] [-c PATH] [-g PATH] [-o PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

56 Chapter 2. SMQTK Architecture Overview

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

SMQTK Documentation, Release 0.13.0

output

-o, --output-map Path to output the clustering class mapping to. Saved as a pickle file with -1
format.

proxyManagerServer

Server for hosting proxy manager which hosts proxy object instances.

This takes a simple configuration file that looks like the following:

[server]
port = <integer>
authkey = <string>

usage: proxyManagerServer [-h] [-v] [-c PATH] [-g PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

removeOldFiles

Utility to recursively scan and remove files underneath a given directory if they have not been modified for longer than
a set amount of time.

usage: removeOldFiles [-h] [-d BASE_DIR] [-i INTERVAL] [-e EXPIRY] [-v]

Named Arguments

-d, --base-dir Starting directory for scan.

-i, --interval Number of seconds between each scan (integer).

-e, --expiry Number of seconds until a file has “expired” (integer).

-v, --verbose Display more messages (debugging).

Default: False

2.4. Utilities and Applications 57

SMQTK Documentation, Release 0.13.0

runApplication

Generic entry point for running SMQTK web applications defined in [smqtk.web](/python/smqtk/web).

Runs conforming SMQTK Web Applications.

usage: runApplication [-h] [-v] [-c PATH] [-g PATH] [-l] [-a APPLICATION] [-r]
[-t] [--host HOST] [--port PORT] [--use-basic-auth]
[--debug-server] [--debug-smqtk]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

Application Selection

-l, --list List currently available applications for running. More description is included if
SMQTK verbosity is increased (-v | –debug-smqtk)

Default: False

-a, --application Label of the web application to run.

Server options

-r, --reload Turn on server reloading.

Default: False

-t, --threaded Turn on server multi-threading.

Default: False

--host Run host address specification override. This will override all other configuration
method specifications.

--port Run port specification override. This will override all other configuration method
specifications.

--use-basic-auth Use global basic authentication as configured.

Default: False

58 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

Other options

--debug-server Turn on server debugging messages ONLY

Default: False

--debug-smqtk Turn on SMQTK debugging messages ONLY

Default: False

summarizePlugins

Print out information about what plugins are currently usable and the documentation headers for each implementation.

usage: summarizePlugins [-h] [-v] [--defaults DEFAULTS]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

--defaults Optionally generate default configuration blocks for each plugin structure and
output as JSON to the specified path.

Default: False

train_itq

Tool for training the ITQ functor algorithm’s model on descriptors in an index.

By default, we use all descriptors in the configured index (uuids_list_filepath is not given a value).

The uuids_list_filepath configuration property is optional and should be used to specify a sub-set of descrip-
tors in the configured index to train on. This only works if the stored descriptors’ UUID is a type of string.

usage: train_itq [-h] [-v] [-c PATH] [-g PATH]

Named Arguments

-v, --verbose Output additional debug logging.

Default: False

Configuration

-c, --config Path to the JSON configuration file.

-g, --generate-config Optionally generate a default configuration file at the specified path. If a config-
uration file was provided, we update the default configuration with the contents
of the given configuration.

2.4. Utilities and Applications 59

SMQTK Documentation, Release 0.13.0

2.5 Plugin Architecture

Each of these main components are housed within distinct sub-modules under smqtk and adhere to a plugin pattern
for the dynamic discovery of implementations.

In SMQTK, data structures and algorithms are first defined by an abstract interface class that lays out what that services
the data structure, or methods that the algorithm, should provide. This allows users to treat instances of structures and
algorithms in a generic way, based on their defined high level functionality, without needing to knowing what specific
implementation is running underneath. It lies, of course, to the implementations of these interfaces to provide the
concrete functionality.

When creating a new data structure or algorithm interface, the pattern is that each interface is defined inside its own
sub-module in the __init__.py file. This file also defines a function get_..._impls() (replacing the ...
with the name of the interface) that returns a mapping of implementation class names to the implementation class
type, by calling the general helper method smqtk.utils.plugin.get_plugins(). This helper method looks
for modules defined parallel to the __init__.py file as well as classes defined in modules listed in an environment
variable (defined by the specific call to get_plugins()). The function then extracts classes that extend from the
specified interface class as denoted by a helper variable in the discovered module or by searching attributes exposed
by the module. See the doc-string of smqtk.utils.plugin.get_plugins() for more information on how
plugin modules are discovered.

2.5.1 Adding a new Interface and Internal Implementation

For example, lets say we’re creating a new data representation interface called FooBar. We would create a directory
and __init__.py file (python module) to house the interface as follows:

python/
smqtk/

representation/
foo_bar/ # new

__init__.py # new

Since we are making a new data representation interface, our new interface should descend from the
smqtk.representation.SmqtkRepresentation interface (algorithm interfaces would descend from
smqtk.algorithms.SmqtkAlgorithm). The SmqtkRepresentation base-class descends from the
Configurable interface (interface class sets __metaclass__ = abc.ABCMeta, thus it is not set in the ex-
ample below).

The __init__.py file for our new sub-module might look something like the following, defining a new abstract
class:

import abc

from smqtk.representation import SmqtkRepresentation
from smqtk.utils.plugin import Pluggable, get_plugins

class FooBar (SmqtkRepresentation, Pluggable):
"""
Some documentation on what this does.
"""
Interface methods and/or abstract functionality here.
-> See the abc module on how to decorate abstract methods.

@abc.abstractmethod
(continues on next page)

60 Chapter 2. SMQTK Architecture Overview

SMQTK Documentation, Release 0.13.0

(continued from previous page)

def do_something(self):
""" Does Something """

def get_foo_bar_impls(reload_modules=False):
import os.path as osp
from smqtk.utils.plugin import get_plugins
this_dir = osp.abspath(osp.dirname(__file__))
env_var = 'FOO_BAR_PATH'
helper_var = 'FOO_BAR_CLASS'
return get_plugins(__name__, this_dir, env_var, helper_var, FooBar,

reload_modules)

When adding a an implementation class, if it is sufficient to be contained in a single file, a new module can be added
like:

python/
smqtk/

representation/
foo_bar/

__init__.py
some_impl.py # new

Where some_impl.py might look like:

from smqtk.representation.foo_bar import FooBar

class SomeImpl (FooBar):
"""
Some documentation
"""
Implementation of abstract methods here

Implementation classes can also live inside of a nested sub-module. This is useful when an implementation class
requires specific or extensive support utilities (for example, see the DescriptorGenerator implementation
ColorDescriptor).:

python/
smqtk/

representation/
foo_bar/

__init__.py
some_impl.py
other_impl/ # new

__init__.py # new

Where the __init__.py file should at least expose concrete implementation classes that should be exported as
attributes for the plugin getter to discover.

Both Pluggable and Configurable

It is important to note that our new interface, as defined above, descends from both the Configurable interface
(transitive through the SmqtkRepresentation base-class) and the Pluggable interface.

The Configurable interface allows classes to be instantiated via a dictionary with JSON-compliant data types. In
conjunction with the plugin getter function (get_foo_bar_impls in our example above), we are able to select and

2.5. Plugin Architecture 61

SMQTK Documentation, Release 0.13.0

construct specific implementations of an interface via a configuration or during runtime (e.g. via a transcoded JSON
object). With this flexibility, an application can set up a pipeline using the high-level interfaces as reference, allowing
specific implementations to be swapped in an out via configuration.

Reload Use Warning

While the smqtk.utils.plugin.get_plugins() function allows for reloading discovered modules for po-
tentially new content, this is not recommended under normal conditions. When reloading a plugin module after
pickle serializing an instance of an implementation, deserialization causes an error because the original class type
that was pickled is no longer valid as the reloaded module overwrote the previous plugin class type.

2.5.2 Function and Interface Reference

smqtk.utils.plugin.get_plugins(interface_type, env_var, helper_var, warn=True,
reload_modules=False)

Discover and return classes implementing the given interface_class.

Discoverable implementations may either be located in sub-modules parallel to the definition of the interface
class or be located in modules specified in the environment variable env_var.

In order to specify additional out-of-scope python modules containing interface-class implementations, addi-
tions to the given environment variable must be made. Entries must be separated by the standard PATH separat-
ing character based on the operating OS standard (e.g. ‘;’ (for windows) or ‘:’ for most everything else). Entries
should be importable python module paths.

When looking at module attributes, we only acknowledge those that start with an alphanumeric character. ‘_’
prefixed attributes are effectively hidden from discovery by this function when merely scanning a module’s
attributes.

We required that the base class that we are checking for also descends from the Pluggable interface defined
above. This allows us to check if a loaded class is_usable.

Within a module we first look for a helper variable by the name provided, which can either be a single class
object or an iterable of class objects, to be specifically exported. If the variable is set to None, we skip that
module and do not import anything. If the variable is not present, we look at attributes defined in that module
for classes that descend from the given base class type. If none of the above are found, or if an exception occurs,
the module is skipped.

Parameters

• interface_type (type) – Interface class type of which we want to discover imple-
mentations of (the plugins).

• env_var (str) – String name of an environment variable defining additional python
module paths, whose child modules are searched for implementing sub-classes of the
specified base type.

• helper_var (str) – Name of the expected module helper attribute.

• warn (bool) – If we should warn about module import failures.

• reload_modules (bool) – Explicitly reload discovered modules from source instead
of taking a potentially cached version of the module.

Returns Set of discovered class types descending from type interface_type and smqtk.
utils.plugin.Pluggable whose keys are the string names of the class types.

Return type set[type[Pluggable]]

62 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#type

SMQTK Documentation, Release 0.13.0

class smqtk.utils.plugin.Pluggable
Interface for classes that have plugin implementations

classmethod get_impls(warn=True, reload_modules=False)
Discover and return a set of classes that implement the calling class.

See the get_plugins function for more details on the logic of how implementing classes (aka “plug-
ins”) are discovered.

The class-level variables PLUGIN_ENV_VAR and PLUGIN_HELPER_VARmay be overridden to change
what environment and helper variable are looked for, respectively.

Parameters warn (bool) –

If we should warn about module import failures.

Parameters reload_modules (bool) – Explicitly reload discovered modules from
source.

Returns Set of discovered class types descending from type interface_type and
smqtk.utils.plugin.Pluggable whose keys are the string names of the class
types.

Return type set[type[Pluggable]]

classmethod is_usable()
Check whether this class is available for use.

Since certain plugin implementations may require additional dependencies that may not yet be available
on the system, this method should check for those dependencies and return a boolean saying if the imple-
mentation is usable.

NOTES:

• This should be a class method

• When an implementation is deemed not usable, this should emit a warning detailing why
the implementation is not available for use.

Returns Boolean determination of whether this implementation is usable.

Return type bool

class smqtk.utils.configuration.Configurable
Interface for objects that should be configurable via a configuration dictionary consisting of JSON types.

classmethod from_config(config_dict, merge_default=True)
Instantiate a new instance of this class given the configuration JSON-compliant dictionary encapsulating
initialization arguments.

This base method is adequate without modification when a class’s constructor argument types are JSON-
compliant. If one or more are not, however, this method then needs to be overridden in order to convert
from a JSON-compliant stand-in into the more complex object the constructor requires. It is recommended
that when complex types are used they also inherit from the Configurable in order to hopefully make
easier the conversion to and from JSON-compliant stand-ins.

When this method does need to be overridden, this usually looks like the following pattern:

class MyClass (Configurable):

@classmethod
def from_config(cls, config_dict, merge_default=True):

(continues on next page)

2.5. Plugin Architecture 63

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool

SMQTK Documentation, Release 0.13.0

(continued from previous page)

Optionally guarantee default values are present in the
configuration dictionary. This statement pairs with the
``merge_default=False`` parameter in the super call.
This also in effect shallow copies the given non-dictionary
entries of ``config_dict`` due to the merger with the
default config.
if merge_default:

config_dict = merge_dict(cls.get_default_config(),
config_dict)

#
Perform any overriding here.
#

Create and return an instance using the super method.
return super(MyClass, cls).from_config(config_dict,

merge_default=False)

This method should not be called via super unless an instance of the class is desired.

Parameters

• config_dict (dict) – JSON compliant dictionary encapsulating a configuration.

• merge_default (bool) – Merge the given configuration on top of the default
provided by get_default_config.

Returns Constructed instance from the provided config.

Return type Configurable

get_config()
Return a JSON-compliant dictionary that could be passed to this class’s from_config method to pro-
duce an instance with identical configuration.

In the most cases, this involves naming the keys of the dictionary based on the initialization argument
names as if it were to be passed to the constructor via dictionary expansion. In some cases, where it
doesn’t make sense to store some object constructor parameters are expected to be supplied at as con-
figuration values (i.e. must be supplied at runtime), this method’s returned dictionary may leave those
parameters out. In such cases, the object’s from_config class-method would also take additional po-
sitional arguments to fill in for the parameters that this returned configuration lacks.

Returns JSON type compliant configuration dictionary.

Return type dict

classmethod get_default_config()
Generate and return a default configuration dictionary for this class. This will be primarily used for
generating what the configuration dictionary would look like for this class without instantiating it.

By default, we observe what this class’s constructor takes as arguments, turning those argument names
into configuration dictionary keys. If any of those arguments have defaults, we will add those values into
the configuration dictionary appropriately. The dictionary returned should only contain JSON compliant
value types.

It is not be guaranteed that the configuration dictionary returned from this method is valid for construction
of an instance of this class.

Returns Default configuration dictionary for the class.

Return type dict

64 Chapter 2. SMQTK Architecture Overview

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

SMQTK Documentation, Release 0.13.0

>>> # noinspection PyUnresolvedReferences
>>> class SimpleConfig(Configurable):
... def __init__(self, a=1, b='foo'):
... self.a = a
... self.b = b
... def get_config(self):
... return {'a': self.a, 'b': self.b}
>>> self = SimpleConfig()
>>> config = self.get_default_config()
>>> assert config == {'a': 1, 'b': 'foo'}

2.5. Plugin Architecture 65

SMQTK Documentation, Release 0.13.0

66 Chapter 2. SMQTK Architecture Overview

CHAPTER 3

Examples

3.1 Simple Feature Computation with ColorDescriptor

The following is a concrete example of performing feature computation for a set of ten butterfly images using the
CSIFT descriptor from the ColorDescriptor software package. It assumes you have set up the colordescriptor
executable and python library in your PATH and PYTHONPATH. Once set up, the following code will compute a
CSIFT descriptor:

Import some butterfly data
urls = ["http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/examples/{:03d}.
→˓jpg".format(i) for i in range(1,11)]
from smqtk.representation.data_element.url_element import DataUrlElement
el = [DataUrlElement(d) for d in urls]

Create a model. This assumes you have set up the colordescriptor executable.
from smqtk.algorithms.descriptor_generator import get_descriptor_generator_impls
cd = get_descriptor_generator_impls()['ColorDescriptor_Image_csift'](model_directory=
→˓'data', work_directory='work')
cd.generate_model(el)

Set up a factory for our vector (here in-memory storage)
from smqtk.representation.descriptor_element_factory import DescriptorElementFactory
from smqtk.representation.descriptor_element.local_elements import
→˓DescriptorMemoryElement
factory = DescriptorElementFactory(DescriptorMemoryElement, {})

Compute features on the first image
result = cd.compute_descriptor(el[0], factory)
result.vector()

array([0. , 0.01254855, 0. , ..., 0.0035853 ,
0. , 0.00388408])

67

http://koen.me/research/colordescriptors/

SMQTK Documentation, Release 0.13.0

3.2 Nearest Neighbor Computation with Caffe

The following is a concrete example of performing a nearest neighbor computation using a set of ten butterfly images.
This example has been tested using Caffe version rc2,) and may work with the master version of Caffe from GitHub.

To generate the required model files image_mean_filepath and network_model_filepath, run the fol-
lowing scripts:

caffe_src/ilsvrc12/get_ilsvrc_aux.sh
caffe_src/scripts/download_model_binary.py ./models/bvlc_reference_caffenet/

Once this is done, the nearest neighbor index for the butterfly images can be built with the following code:

from smqtk.algorithms.nn_index.flann import FlannNearestNeighborsIndex

Import some butterfly data
urls = ["http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/examples/{:03d}.
→˓jpg".format(i) for i in range(1,11)]
from smqtk.representation.data_element.url_element import DataUrlElement
el = [DataUrlElement(d) for d in urls]

Create a model. This assumes that you have properly set up a proper Caffe
→˓environment for SMQTK
from smqtk.algorithms.descriptor_generator import get_descriptor_generator_impls
cd = get_descriptor_generator_impls()['CaffeDescriptorGenerator'](

network_prototxt_filepath="caffe/models/bvlc_reference_caffenet/deploy.
→˓prototxt",

network_model_filepath="caffe/models/bvlc_reference_caffenet/bvlc_reference_
→˓caffenet.caffemodel",

image_mean_filepath="caffe/data/ilsvrc12/imagenet_mean.binaryproto",
return_layer="fc7",
batch_size=1,
use_gpu=False,
gpu_device_id=0,
network_is_bgr=True,
data_layer="data",
load_truncated_images=True)

Set up a factory for our vector (here in-memory storage)
from smqtk.representation.descriptor_element_factory import DescriptorElementFactory
from smqtk.representation.descriptor_element.local_elements import
→˓DescriptorMemoryElement
factory = DescriptorElementFactory(DescriptorMemoryElement, {})

Compute features on the first image
descriptors = []
for item in el:

d = cd.compute_descriptor(item, factory)
descriptors.append(d)

index = FlannNearestNeighborsIndex(distance_method="euclidean",
random_seed=42, index_filepath="nn.index",
parameters_filepath="nn.params",
descriptor_cache_filepath="nn.cache")

index.build_index(descriptors)

68 Chapter 3. Examples

http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe

SMQTK Documentation, Release 0.13.0

3.3 NearestNeighborServiceServer Incremental Update Example

3.3.1 Goal and Plan

In this example, we will show how to initially set up an instance of the NearestNeighborServiceServer web
API service class such that it can handle incremental updates to its background data. We will also show how to perform
incremental updates and confirm that the service recognizes this new data.

For this example, we will use the LSHNearestNeighborIndex implementation as it is one that cur-
rently supports live-reloading its component model files. Along with it, we will use the ItqFunctor and
PostgresDescriptorIndex implementations as the components of the LSHNearestNeighborIndex. For
simplicity, we will not use a specific HashIndex, which causes a LinearHashIndex to be constructed and used
at query time.

All scripts used in this example’s proceedure have a command line interface that uses dash options. Their available
options can be listed by giving the -h/--help option. Additional debug logging can be seen output by providing a
-d or -v option, depending on the script.

This example assumes that you have a basic understanding of:

• JSON for configuring files

• how to use the bin/runApplication.py

• SMQTK’s NearestNeighborServiceServer application and algorithmic/data-structure components.

– NearestNeighborsIndex, specific the implementation LSHNearestNeighborIndex

– DescriptorIndex abstract and implementations with an updatable persistance storage mecha-
nism (e.g. PostgresDescriptorIndex).

– LshFunctor abstract and implementations

Dependencies

Due to our use of the PostgresDescriptorIndex in this example, a minimum installed version of PostgreSQL
9.4 is required, as is the psycopg2 python module (conda and pip installable). Please check and modify the
configuration files for this example to be able to connect to the database of your choosing.

Take a look at the etc/smqtk/postgres/descriptor_element/example_table_init.sql and
etc/smqtk/postgres/descriptor_index/example_table_init.sql files, located from the root of
the source tree, for table creation examples for element and index storage:

$ psql postgres -f etc/smqtk/postgres/descriptor_element/example_table_init.sql
$ psql postgres -f etc/smqtk/postgres/descriptor_index/example_table_init.sql

3.3.2 Proceedure

[1] Getting and Splitting the data set

For this example we will use the Leeds butterfly data set (see the download_leeds_butterfly.sh script). We
will split the data set into an initial sub-set composed of about half of the images from each butterfly catagory (418 total
images in the 2.ingest_files_1.txt file). We will then split the data into a two more sub-sets each composed
of about half of the remaining data (each composing about 1/4 of the original data set, totaling 209 and 205 images
each in the TODO.ingest_files_2.txt and TODO.ingest_files_3.txt files respectively).

3.3. NearestNeighborServiceServer Incremental Update Example 69

http://www.comp.leeds.ac.uk/scs6jwks/dataset/leedsbutterfly/

SMQTK Documentation, Release 0.13.0

[2] Computing Initial Ingest

For this example, an “ingest” consists of a set of descriptors in an index and a mapping of hash codes to the descriptors.

In this example, we also train the LSH hash code functor’s model, if it needs one, based on the descriptors computed
before computing the hash codes. We are using the ITQ functor which does require a model. It may be the case that
the functor of choice does not require a model, or a sufficient model for the functor is already available for use, in
which case that step may be skipped.

Our example’s initial ingest will use the image files listed in the 2.ingest_files_1.txt test file.

[2a] Computing Descriptors

We will use the script bin/scripts/compute_many_descriptors.py for computing descriptors from a list
of file paths. This script will be used again in later sections for additional incremental ingests.

The example configuration file for this script, 2a.config.compute_many_descriptors.json (shown be-
low), should be modified to connect to the appropriate PostgreSQL database and the correct Caffe model files for
your system. For this example, we will be using Caffe’s bvlc_alexnet network model with the ilsvrc12 image
mean be used for this example.

1 {
2 "descriptor_factory": {
3 "PostgresDescriptorElement": {
4 "binary_col": "vector",
5 "db_host": "/dev/shm",
6 "db_name": "postgres",
7 "db_pass": null,
8 "db_port": null,
9 "db_user": null,

10 "table_name": "descriptors",
11 "type_col": "type_str",
12 "uuid_col": "uid"
13 },
14 "type": "PostgresDescriptorElement"
15 },
16 "descriptor_generator": {
17 "CaffeDescriptorGenerator": {
18 "batch_size": 256,
19 "data_layer": "data",
20 "gpu_device_id": 0,
21 "image_mean_filepath": "/home/purg/dev/caffe/source/data/ilsvrc12/

→˓imagenet_mean.binaryproto",
22 "load_truncated_images": false,
23 "network_is_bgr": true,
24 "network_model_filepath": "/home/purg/dev/caffe/source/models/bvlc_

→˓alexnet/bvlc_alexnet.caffemodel",
25 "network_prototxt_filepath": "/home/purg/dev/caffe/source/models/bvlc_

→˓alexnet/deploy.prototxt",
26 "pixel_rescale": null,
27 "return_layer": "fc7",
28 "use_gpu": false
29 },
30 "type": "CaffeDescriptorGenerator"
31 },
32 "descriptor_index": {
33 "PostgresDescriptorIndex": {

(continues on next page)

70 Chapter 3. Examples

SMQTK Documentation, Release 0.13.0

(continued from previous page)

34 "db_host": "/dev/shm",
35 "db_name": "postgres",
36 "db_pass": null,
37 "db_port": null,
38 "db_user": null,
39 "element_col": "element",
40 "multiquery_batch_size": 1000,
41 "pickle_protocol": -1,
42 "read_only": false,
43 "table_name": "descriptor_index",
44 "uuid_col": "uid"
45 },
46 "type": "PostgresDescriptorIndex"
47 }
48 }

For running the script, take a look at the example invocation in the file 2a.run.sh:

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 ../../../bin/scripts/compute_many_descriptors.py \
7 -v \
8 -c 2a.config.compute_many_descriptors.json \
9 -f 2.ingest_files_1.txt \

10 --completed-files 2a.completed_files.csv

This step yields two side effects:

• Descriptors computed are saved in the configured implementation’s persistant storage (a postgres database in
our case)

• A file is generated that mapping input files to their DataElement UUID values, or otherwise known as their SHA1 checksum values (2a.completed_files.csv for us).

– This file will be used later as a convenient way of getting at the UUIDs of descriptors processed for
a particular ingest.

– Other uses of this file for other tasks may include:

* interfacing with other systems that use file paths as the primary identifier of base data files

* want to quickly back-reference the original file for a given UUID, as UUIDs for descriptor
and classification elements are currently the same as the original file they are computed
from.

[2b] Training ITQ Model

To train the ITQ model, we will use the script: ./bin/scripts/train_itq.py. We’ll want to train the functor’s
model using the descriptors computed in step 2a. Since we will be using the whole index (418 descriptors), we will
not need to provide the script with an additional list of UUIDs.

The example configuration file for this script, 2b.config.train_itq.json, should be modified to connect to
the appropriate PostgreSQL database.

3.3. NearestNeighborServiceServer Incremental Update Example 71

SMQTK Documentation, Release 0.13.0

1 {
2 "descriptor_index": {
3 "PostgresDescriptorIndex": {
4 "db_host": "/dev/shm",
5 "db_name": "postgres",
6 "db_pass": null,
7 "db_port": null,
8 "db_user": null,
9 "element_col": "element",

10 "multiquery_batch_size": 1000,
11 "pickle_protocol": -1,
12 "read_only": false,
13 "table_name": "descriptor_index",
14 "uuid_col": "uid"
15 },
16 "type": "PostgresDescriptorIndex"
17 },
18 "itq_config": {
19 "bit_length": 256,
20 "itq_iterations": 50,
21 "mean_vec_filepath": "2b.itq.256bit.mean_vec.npy",
22 "random_seed": 0,
23 "rotation_filepath": "2b.itq.256bit.rotation.npy"
24 },
25 "parallel": {
26 "index_load_cores": 4,
27 "use_multiprocessing": true
28 },
29 "uuids_list_filepath": null
30 }

2b.run.sh contains an example call of the training script:

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 ../../../bin/scripts/train_itq.py -v -c 2b.config.train_itq.json

This step produces the following side effects:

• Writes the two file components of the model as configured.

– We configured the output files:

* 2b.itq.256bit.mean_vec.npy

* 2b.nnss.itq.256bit.rotation.npy

[2c] Computing Hash Codes

For this step we will be using the script bin/scripts/compute_hash_codes.py to compute ITQ hash codes
for the currently computed descriptors. We will be using the descriptor index we added to before as well as the
ItqFunctor models we trained in the previous step.

This script additionally wants to know the UUIDs of the descriptors to compute hash codes for. We can use the 2a.
completed_files.csv file computed earlier in step 2a to get at the UUIDs (SHA1 checksum) values for the

72 Chapter 3. Examples

SMQTK Documentation, Release 0.13.0

computed files. Remember, as is documented in the DescriptorGenerator interface, descriptor UUIDs are the
same as the UUID of the data from which it was generated from, thus we can use this file.

We can conveniently extract these UUIDs with the following commands in script 2c.extract_ingest_uuids.
sh, resulting in the file 2c.uuids_for_processing.txt:

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 cat 2a.completed_files.csv | cut -d',' -f2 >2c.uuids_for_processing.txt

With this file, we can now complete the configuration for our computation script:

1 {
2 "plugins": {
3 "descriptor_index": {
4 "PostgresDescriptorIndex": {
5 "db_host": "/dev/shm",
6 "db_name": "postgres",
7 "db_pass": null,
8 "db_port": null,
9 "db_user": null,

10 "element_col": "element",
11 "multiquery_batch_size": 1000,
12 "pickle_protocol": -1,
13 "read_only": false,
14 "table_name": "descriptor_index",
15 "uuid_col": "uid"
16 },
17 "type": "PostgresDescriptorIndex"
18 },
19 "lsh_functor": {
20 "ItqFunctor": {
21 "bit_length": 256,
22 "itq_iterations": 50,
23 "mean_vec_filepath": "2b.itq.256bit.mean_vec.npy",
24 "random_seed": 0,
25 "rotation_filepath": "2b.itq.256bit.rotation.npy"
26 },
27 "type": "ItqFunctor"
28 }
29 },
30 "utility": {
31 "hash2uuids_input_filepath": null,
32 "hash2uuids_output_filepath": "2c.hash2uuids.pickle",
33 "pickle_protocol": -1,
34 "report_interval": 1.0,
35 "use_multiprocessing": true,
36 "uuid_list_filepath": "2c.uuids_for_processing.txt"
37 }
38 }

We are not setting a value for hash2uuids_input_filepath because this is the first time we are running this
script, thus we do not have an existing structure to add to.

We can now move forward and run the computation script:

3.3. NearestNeighborServiceServer Incremental Update Example 73

SMQTK Documentation, Release 0.13.0

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 ../../../bin/scripts/compute_hash_codes.py -v -c 2c.config.compute_hash_codes.json

This step produces the following side effects:

• Writed the file 2c.hash2uuids.pickle

– This file will be copied and used in configuring the LSHNearestNeighborIndex for the
NearestNeighborServiceServer

[2d] Starting the NearestNeighborServiceServer

Normally, a NearestNeighborsIndex instance would need to be have its index built before it can be used.
However, we have effectively already done this in the preceeding steps, so are instead able to get right to configuring
and starting the NearestNeighborServiceServer. A default configuration may be generated using the generic
bin/runApplication.py script (since web applications/servers are plugins) using the command:

$ runApplication.py -a NearestNeighborServiceServer -g 2d.config.nnss_app.json

An example configuration has been provided in 2d.config.nnss_app.json. The DescriptorIndex,
DescriptorGenerator and LshFunctor configuration sections should be the same as used in the preceed-
ing sections.

Before configuring, we are copying 2c.hash2uuids.pickle to 2d.hash2uuids.pickle. Since we will be
overwriting this file (the 2d version) in steps to come, we want to separate it from the results of step 2c.

Note the highlighted lines for configurations of note for the LSHNearestNeighborIndex implementation. These
will be explained below.

1 {
2 "descriptor_factory": {
3 "PostgresDescriptorElement": {
4 "binary_col": "vector",
5 "db_host": "/dev/shm",
6 "db_name": "postgres",
7 "db_pass": null,
8 "db_port": null,
9 "db_user": null,

10 "table_name": "descriptors",
11 "type_col": "type_str",
12 "uuid_col": "uid"
13 },
14 "type": "PostgresDescriptorElement"
15 },
16 "descriptor_generator": {
17 "CaffeDescriptorGenerator": {
18 "batch_size": 256,
19 "data_layer": "data",
20 "gpu_device_id": 0,
21 "image_mean_filepath": "/home/purg/dev/caffe/source/data/ilsvrc12/

→˓imagenet_mean.binaryproto",
22 "load_truncated_images": false,
23 "network_is_bgr": true,

(continues on next page)

74 Chapter 3. Examples

SMQTK Documentation, Release 0.13.0

(continued from previous page)

24 "network_model_filepath": "/home/purg/dev/caffe/source/models/bvlc_
→˓alexnet/bvlc_alexnet.caffemodel",

25 "network_prototxt_filepath": "/home/purg/dev/caffe/source/models/bvlc_
→˓alexnet/deploy.prototxt",

26 "pixel_rescale": null,
27 "return_layer": "fc7",
28 "use_gpu": false
29 },
30 "type": "CaffeDescriptorGenerator"
31 },
32 "flask_app": {
33 "BASIC_AUTH_PASSWORD": "demo",
34 "BASIC_AUTH_USERNAME": "demo",
35 "SECRET_KEY": "MySuperUltraSecret"
36 },
37 "nn_index": {
38 "LSHNearestNeighborIndex": {
39 "descriptor_index": {
40 "PostgresDescriptorIndex": {
41 "db_host": "/dev/shm",
42 "db_name": "postgres",
43 "db_pass": null,
44 "db_port": null,
45 "db_user": null,
46 "element_col": "element",
47 "multiquery_batch_size": 1000,
48 "pickle_protocol": -1,
49 "read_only": false,
50 "table_name": "descriptor_index",
51 "uuid_col": "uid"
52 },
53 "type": "PostgresDescriptorIndex"
54 },
55 "distance_method": "hik",
56 "hash2uuid_cache_filepath": "2d.hash2uuids.pickle",
57 "hash_index": {
58 "type": null
59 },
60 "hash_index_comment": "'hash_index' may also be null to default to a

→˓linear index built at query time.",
61 "live_reload": true,
62 "lsh_functor": {
63 "ItqFunctor": {
64 "bit_length": 256,
65 "itq_iterations": 50,
66 "mean_vec_filepath": "2b.itq.256bit.mean_vec.npy",
67 "random_seed": 0,
68 "rotation_filepath": "2b.itq.256bit.rotation.npy"
69 },
70 "type": "ItqFunctor"
71 },
72 "read_only": true,
73 "reload_mon_interval": 0.1,
74 "reload_settle_window": 1.0
75 },
76 "type": "LSHNearestNeighborIndex"
77 },

(continues on next page)

3.3. NearestNeighborServiceServer Incremental Update Example 75

SMQTK Documentation, Release 0.13.0

(continued from previous page)

78 "server": {
79 "host": "127.0.0.1",
80 "port": 5000
81 }
82 }

Emphasized line explanations:

• On line 55, we are using the hik distance method, or histogram intersection distance, as it has been experimen-
tally shown to out perform other distance metrics for AlexNet descriptors.

• On line 56, we are using the output generated during step 2c. This file will be updated during incremental
updates, along with the configured DescriptorIndex.

• On line 58, we are choosing not to use a pre-computed HashIndex. This means that a LinearHashIndex
will be created and used at query time. Other implementations in the future may incorporate live-reload func-
tionality.

• On line 61, we are telling the LSHNearestNeighborIndex to reload its implementation-specific model files when it detects that they’ve changed.

– We listed LSHNearestNeighborIndex implementation’s only model file on line 56 and will
be updated via the bin/scripts/compute_hash_codes.py

• On line 72, we are telling the implementation to make sure it does not write to any of its resources.

We can now start the service using:

$ runApplication.py -a NearestNeighborServiceServer -c 2d.config.nnss_app.json

We can test the server by calling its web api via curl using one of our ingested images, leedsbutterfly/images/
001_0001.jpg:

$ curl http://127.0.0.1:5000/nn/n=10/file:///home/purg/data/smqtk/leedsbutterfly/
→˓images/001_0001.jpg
{

"distances": [
-2440.0882132202387,
-1900.5749250203371,
-1825.7734497860074,
-1771.708476960659,
-1753.6621350347996,
-1729.6928340941668,
-1684.2977819740772,
-1627.438737615943,
-1608.4607088603079,
-1536.5930510759354

],
"message": "execution nominal",
"neighbors": [
"84f62ef716fb73586231016ec64cfeed82305bba",
"ad4af38cf36467f46a3d698c1720f927ff729ed7",
"2dffc1798596bc8be7f0af8629208c28606bba65",
"8f5b4541f1993a7c69892844e568642247e4acf2",
"e1e5f3e21d8e3312a4c59371f3ad8c49a619bbca",
"e8627a1a3a5a55727fe76848ba980c989bcef103",
"750e88705efeee2f12193b45fb34ec10565699f9",
"e21b695a99fee6ff5af8d2b86d4c3e8fe3295575",

(continues on next page)

76 Chapter 3. Examples

SMQTK Documentation, Release 0.13.0

(continued from previous page)

"0af474b31fc8002fa9b9a2324617227069649f43",
"7da0501f7d6322aef0323c34002d37a986a3bf74"

],
"reference_uri": "file:///home/purg/data/smqtk/leedsbutterfly/images/001_0001.jpg",
"success": true

}

If we compare the result neighbor UUIDs to the SHA1 hash signatures of the original files (that descritpors were
computed from), listed in the step 2a result file 2a.completed_files.csv, we find that the above results are all
of the class 001, or monarch butterflies.

If we used either of the files leedsbutterfly/images/001_0042.jpg or leedsbutterfly/images/
001_0063.jpg, which are not in our initial ingest, but in the subsequent ingests, and set .../n=832/... (the
maximum size we will see in ingest grow to), we would see that the API does not return their UUIDs since they have
not been ingested yet. We will also see that only 418 neighbors are returned even though we asked for 832, since there
are only 418 elements currently in the index. We will use these three files as proof that we are actually expanding the
searchable content after each incremental ingest.

We provide a helper bash script, test_in_index.sh, for checking if a file is findable via in the search API. A call
of the form:

$./test_in_index.sh leedsbutterfly/images/001_0001.jpg 832

. . . performs a curl call to the server’s default host address and port for the 832 nearest neighbors to the query image
file, and checks if the UUIDs of the given file (the sha1sum) is in the returned list of UUIDs.

[3] First Incremental Update

Now that we have a live NearestNeighborServiceServer instance running, we can incrementally process
the files listed in 3.ingest_files_2.txt, making them available for search without having to shut down or
otherwise do anything to the running server instance.

We will be performing the same actions taken in steps 2a and 2c, but with different inputs and outputs:

1. Compute descriptors for files listed in 3.ingest_files_2.txt using script
compute_many_descriptors.py, outputting file 3.completed_files.csv.

2. Create a list of descriptor UUIDs just computed (see 2c.extract_ingest_uuids.sh) and compute
hash codes for those descriptors, overwriting 2d.hash2uuids.pickle (which causes the server the
LSHNearestNeighborIndex instance to update itself).

The following is the updated configuration file for hash code generation. Note the highlighted lines for differences
from step 2c (notes to follow):

1 {
2 "plugins": {
3 "descriptor_index": {
4 "PostgresDescriptorIndex": {
5 "db_host": "/dev/shm",
6 "db_name": "postgres",
7 "db_pass": null,
8 "db_port": null,
9 "db_user": null,

10 "element_col": "element",
11 "multiquery_batch_size": 1000,
12 "pickle_protocol": -1,

(continues on next page)

3.3. NearestNeighborServiceServer Incremental Update Example 77

SMQTK Documentation, Release 0.13.0

(continued from previous page)

13 "read_only": false,
14 "table_name": "descriptor_index",
15 "uuid_col": "uid"
16 },
17 "type": "PostgresDescriptorIndex"
18 },
19 "lsh_functor": {
20 "ItqFunctor": {
21 "bit_length": 256,
22 "itq_iterations": 50,
23 "mean_vec_filepath": "2b.itq.256bit.mean_vec.npy",
24 "random_seed": 0,
25 "rotation_filepath": "2b.itq.256bit.rotation.npy"
26 },
27 "type": "ItqFunctor"
28 }
29 },
30 "utility": {
31 "hash2uuids_input_filepath": "2d.hash2uuids.pickle",
32 "hash2uuids_output_filepath": "2d.hash2uuids.pickle",
33 "pickle_protocol": -1,
34 "report_interval": 1.0,
35 "use_multiprocessing": true,
36 "uuid_list_filepath": "3.uuids_for_processing.txt"
37 }
38 }

Line notes:

• Lines 31 and 32 are set to the model file that the LSHNearestNeighborIndex implementation for the
server was configured to use.

• Line 36 should be set to the descriptor UUIDs file generated from 3.completed_files.csv (see 2c.
extract_ingest_uuids.sh)

The provided 3.run.sh script is an example of the commands to run for updating the indices and models:

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 # Compute descriptors for new files, outputing a file that matches input
7 # files to thair SHA1 checksum values (their UUIDs)
8 ../../../bin/scripts/compute_many_descriptors.py \
9 -d \

10 -c 2a.config.compute_many_descriptors.json \
11 -f 3.ingest_files_2.txt \
12 --completed-files 3.completed_files.csv
13

14 # Extract UUIDs of files/descriptors just generated
15 cat 3.completed_files.csv | cut -d, -f2 > 3.uuids_for_processing.txt
16

17 # Compute hash codes for descriptors just generated, updating the target
18 # hash2uuids model file.
19 ../../../bin/scripts/compute_hash_codes.py -v -c 3.config.compute_hash_codes.json

After calling the compute_hash_codes.py script, the server logging should yield messages (if run in de-

78 Chapter 3. Examples

SMQTK Documentation, Release 0.13.0

bug/verbose mode) showing that the LSHNearestNeighborIndex updated its model.

We can now test that the NearestNeighborServiceServer using the query examples used at the end of step 2d.
Using images leedsbutterfly/images/001_0001.jpg and leedsbutterfly/images/001_0042.
jpg as our query examples (and .../n=832/...), we can see that both are in the index (each image is the nearest
neighbor to itself). We also see that a total of 627 neighbors are returned, which is the current number of elements now
in the index after this update. The sha1 of the third image file, leedsbutterfly/images/001_0082.jpg,
when used as the query example, is not included in the returned neighbors and thus found in the index.

[4] Second Incremental Update

Let us repeat again the above process, but using the third increment set (highlighted lines different from 3.run.sh):

1 #!/usr/bin/env bash
2 set -e
3 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
4 cd "${SCRIPT_DIR}"
5

6 # Compute descriptors for new files, outputing a file that matches input
7 # files to thair SHA1 checksum values (their UUIDs)
8 ../../../bin/scripts/compute_many_descriptors.py \
9 -d \

10 -c 2a.config.compute_many_descriptors.json \
11 -f 4.ingest_files_3.txt \
12 --completed-files 4.completed_files.csv
13

14 # Extract UUIDs of files/descriptors just generated
15 cat 4.completed_files.csv | cut -d, -f2 > 4.uuids_for_processing.txt
16

17 # Compute hash codes for descriptors just generated, updating the target
18 # hash2uuids model file.
19 ../../../bin/scripts/compute_hash_codes.py -v -c 4.config.compute_hash_codes.json

After this, we should be able to query all three example files used before and see that they are all now included in
the index. We will now also see that all 832 neighbors requested are returned for each of the queries, which equals
the total number of files we have ingested over the above steps. If we increase n for a query, only 832 neighbors are
returned, showing that there are 832 elements in the index at this point.

3.3. NearestNeighborServiceServer Incremental Update Example 79

SMQTK Documentation, Release 0.13.0

80 Chapter 3. Examples

CHAPTER 4

Release Process and Notes

4.1 Steps of the SMQTK Release Process

Three types of releases are expected to occur: - major - minor - patch

See the CONTRIBUTING.md file for information on how to contribute features and patches.

The following process should apply when any release that changes the version number occurs.

4.1.1 Create and merge version update branch

Patch Release

A patch release should only contain fixes for bugs or issues with an existing release. No new features or functionality
should be introduced in a patch release. As such, patch releases should only ever be based on an existing release point.

1. Create a new branch off of the release branch named something like
release-patch-{NEW_VERSION}.

• Increment patch value in VERSION file.

• Rename the docs/release_notes/pending_patch.rst file to docs/release_notes/
v{VERSION}.rst, matching the value in the VERSION file. Add a descriptive paragraph under the title
section summarizing this release.

• Add new release notes RST file reference to docs/release_notes.rst.

2. Tag branch (see Tag new version below).

3. Merge version bump branch into release and master branches.

Major and Minor Releases

Major and minor releases may add one or more trivial or non-trivial features and functionalities.

81

SMQTK Documentation, Release 0.13.0

1. Create a new branch off of the master or release named something like release-[major,
minor]-{NEW_VERSION}.

a) Increment patch value in VERSION file.

b) Rename the docs/release_notes/pending_release.rst file to docs/release_notes/
v{VERSION}.rst, matching the value in the VERSION file. Add a descriptive paragraph under the title
section summarizing this release.

c) Add new release notes RST file reference to docs/release_notes.rst.

2. Create a pull/merge request for this branch with master as the merge target. This is to ensure that everything
passes CI testing before making the release. If there is an issue then branches should be made and merged into
this branch until the issue is resolved.

3. Tag branch (see Tag new version below) after resolving issues and before merging into master.

4. Reset the release branch (–hard) to point to the new branch/tag.

5. Merge version bump branch into the master branch.

4.1.2 Tag new version

Release branches should be tagged in order to record where in the git tree a particular release refers to. The branch off
of master or release is usually the target of such tags.

Currently the From GitHub method is preferred as it creates a “verified” release.

From GitHub

Navigate to the releases page on GitHub and click the Draft a new release button in upper right.

Fill in the new version in the Tag version text box (e.g. v#.#.#) and use the same string in the Release
title text box. The “@” target should be the release branch created above.

Copy and past this version’s release notes into the Describe this release text box.

Remember to check the This is a pre-release check-box if appropriate.

Click the Public release button at the bottom of the page when complete.

From Git on the Command Line

Create a new git tag using the new version number (format: v<MAJOR.<MINOR>.<PATCH>) on the merge commit
for the version update branch merger:

$ git tag -a -m "[Major|Minor|Patch] release v#.#.#"

Push this new tag to GitHub (assuming origin remote points to SMQTK on GitHub:

$ git push origin v#.#.#

To add the release notes to GitHub, navigate to the tags page on GitHub and click on the “Add release notes” link
for the new release tag. Copy and paste this version’s release notes into the description field and the version number
should be used as the release title.

82 Chapter 4. Release Process and Notes

https://github.com/Kitware/SMQTK/releases
https://github.com/Kitware/SMQTK
https://github.com/Kitware/SMQTK/tags

SMQTK Documentation, Release 0.13.0

4.1.3 Create new version release to PYPI

Make sure the source is checked out on the newest version tag, the repo is clean (no uncommited files/edits), and the
build and dist directories are removed:

$ git checkout <VERSION_TAG>
$ rm -r dist python/smqtk.egg-info

Create the build and dist files for the current version with the following command(s) from the source tree root
directory:

$ python setup.py sdist

Make sure your $HOME/.pypirc file is up-to-date and includes the following section with your username/password:

[pypi]
username = <username>
password = <password>

Make sure the twine python package is installed and is up-to-date and then upload dist packages created with:

$ twine upload dist/*

4.2 Release Notes

4.2.1 SMQTK v0.2 Release Notes

This is a minor release if SMQTK that provides both new functionality and fixes over the previous version v0.1.

The highlights of this release are new and updated interface classes, an updated plugin system, new HBase and Post-
greSQL DataElement implementations, and a new wrapper for Caffe CNN descriptor extraction.

Additional one-off scripts were added for reference as well as a more generally usable utility for listing out available
plugins for the running system and environment.

Additional notes about the release are provided below.

Updates / New Features since v0.1

General

• Added SmqtkObject, SmqtkAlgorithm and SmqtkRepresentation interfaces for high level classi-
fication of sub-classes and encapsulation if high level general functionality (like logging).

• Removed GENIE and MASIR archive directories. There is a tag for the last hash where they were present in
this repository. Not removed from history so cloning the SMQTK repo is still large.

• Removed geospace web application sub-module (moved elsewhere).

Documentation

• Update documentaiton to reStructured text files and added support for building Sphinx documentation pages.

Plugins

• Added Pluggable interface, intended for abstract classes whose implementations are expected to be provided
via dynamic plugins, and propagated its use within the code base.

4.2. Release Notes 83

SMQTK Documentation, Release 0.13.0

• get_plugins function now ensures that loaded classes descend from Pluggable and check that they are
currently usable.

Data Elements

• Added HBase backend.

• Added PostgreSQL backend.

• Added asynchronous conversion of an iterable of DataElement instances into a numpy matrix. Supports
multiprocessing and threading approaches.

Data Sets

• Added default implementation of contains method to abstract interface.

• Separated out original DataFileSet into separate file-based and in-memory implementations.

• Added file caching of memory-based data sets.

Descriptor Generators

• Expanded construction parameters for ColorDescriptor implementations so as to remove most class-level vari-
ables.

• Added CaffeDefaultImageNet implementation and support files. This is intended to be used with the
cnn_feature_extractor binary optionally built with SMQTK.

Nearest Neighbors

• Removed model FLANN implementation model filepath defaults, allowing purely in-memory use without model
persistance.

Web Tools

• Added static file hosting flask blueprint in the IQR demo for serving arbitrary directories as a source of static
files. Removed need to write generated files into source tree in order to host them.

• Fixed base flask app interface to be Pluggable.

Python Utilities

• Shifted some functions around into locations where it makes more sense for them to live

– smqtk.utils.safe_create_dir -> smqtk.utils.file_utils.safe_create_dir

– smqtk.utils.touch -> smqtk.utils.file_utils.touch

Tools / Scripts

• Added plugin summarization script for listing names and description of currently available plugins for the vari-
ous SMQTK interfaces.

• Changed IQR model generation example script to use the same configuration file that would be passed to the
IQR web app (simplification).

• Added machine specific ITQ code generation scripts

Fixes since v0.1

IQR web application demo

• Fixed preview cache to clean up after itself.

Code Index

84 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

• Fixed the way MemoryCodeIndex updated descriptor count so as not to count descriptor overwrites as new
descriptors.

Descriptor Generators

• Fixed ColorDescriptor implementation use of pyflann.FLANN.nn_index when the distance method is
“hik” (inverted results order and distance values).

• Fixed ColorDescriptor is_usable check to catch stdout/stderr output.

Nearest Neighbors

• Fixed issue with FLANN implementation where containing directories for output files were not being created
first.

Relevancy Index

• Fixed bug in LibSvmHikRelevancyIndex where negative distance values would cause an error.

IQR Utils

• Fixed incorrect default RelevancyIndex configuration.

Tests

• Fixed tests due to DataSet implementation split

Tools / Scripts

• Fixed various bugs in compute scripts

Miscellaneous

• Removed various unnecessary print statements originally for debugging.

• Removed redundant uses of metaclass declarations.

4.2.2 SMQTK v0.2.1 Release Notes

This is a minor release with a necessary bug fix for installing SMQTK. This release also has a minor documentation
update regarding Caffe AlexNet default model files and how/where to get them.

Updates / New Features since v0.2

Documentation

• Added segment on acquiring necessary Caffe model files for use with the current caffe wrapper implementation.

Fixes since v0.2

Build

• Fix an issue where the CMake was trying to install directories no longer in the source tree due to earlier removal.

4.2.3 SMQTK v0.2.2 Release Nodes

This minor release primarily adds classifier algorithm and classification representation support, a new service web
application for nearest-neighbors algorithms, as well as additional documentation.

Also, this release adds a few more command line tools, especially of note is iqrTrainClassifier.py that can
train a classifier based on the saved state of the IQR demonstration application (also a new feature).

4.2. Release Notes 85

SMQTK Documentation, Release 0.13.0

Updates / New Features since v0.2.1

Classifiers

• Added generic Classifier algorithm interface.

• Added SupervisedClassifier intermediate interface.

Classification Elements

• Added classification result encapsulation interface.

• Added in-memory implementation

• Added PostgreSQL implementation

• Added file-based implementation

• Added ClassificationElementFactory implementation.

Data Elements

• Added DataFileElement implementation the optional use of the tika module for file content type extraction.
Falls back to previous method when tika module not found or fails.

Descriptor Elements

• Moved additional implementation specific documentation into docs/ directory.

• Moved additional implementation specific configuration and example files into etc/smqtk/.

• Moved PostgresDescriptorElement implementation out of nested sub-module into a single module in
implementations directory.

Descriptor Generators

• Removed PARALLEL class variable (parameterized in pertinent implementation constructors).

• Added CaffeDescriptorGenerator implementation, which is more generalized and model agnostic,
using the Caffe python interface.

Documentation

• Added web-service documentation directory and moved applicable documentation files there.

• Added more/better documentation on IQR demonstration application.

• Added documentation on saving IQR state and training/using a supervised classifier based on it.

Tools / Scripts

• Added descriptor compute script that reads from a file-list text file specifying input data file paths, and asyn-
chronously computes descriptors. Uses JSON configuration file for algorithm and element backend specifica-
tion.

• Added tool for training a supervised classifier based on an IQR session state.

• Added tool for classifying a sequence of input file paths, outputting paths that classified as the input label
(highest confidence).

• Converted iqr_app_model_generation.py to run as a command line tool with arguments, rather than
an example script.

Web / Services

• Added NearestNeighborServiceServer, which provides web-service that returns the nearest N neigh-
bors to the given descriptor element.

86 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

• Added ability to save IQR state via a new button in web interface. This file is used with the IQR classifier
training script.

Fixes since v0.2.1

Custom LibSVM

• Fixed an issue where svm_save_model would crash when saving a 2-class SVM model.

• Fixed an issue where svm_save_model would save an extra, unexpected file when saving a 2-class SVM
model.

Descriptor Elements

• Fix threading joining in elements_to_matrix (when using non-multiprocessing mode).

• Fixed configuration use in DescriptorElementFactory.from_config.

Data Sets

• Removed is_usable abstract method. Redundant with Pluggable base class.

Docs

• Made sphinx_server.py executable.

• Fixed whitespacing issue with docs/algorithms.rst that prevented display of ToC sections.

• Updated/Fixed various class/function doc-strings.

Utils

• Fixed smqtk.utils.plugin.get_plugins to handle skipping intermediate interfaces between the base
class and implementation classes, as well as to skip implementation classes that do not fully implement abstract
methods.

4.2.4 SMQTK v0.3.0 Release Notes

This minor release primarily adds a new modular LSH nearest-neighbor index algorithm implementation. This new
implementation strictly replaces the now deprecated and removed ITQNearestNeighborsIndex implementation
because of its increased modularity and flexibility. The old ITQNearestNeighborsIndex implementation had
been hard-coded and its previous functionality can be reproduced with the new implementation (ItqFunctor +
LinearHashIndex).

The CodeIndex representation interface has also been depricated as its function has been replaced by the combina-
tion of the LSHNearestNeighborIndex implementation.

Updates / New Features since v0.2.2

CodeIndex

• Deprecated/Removed because of duplication with DescriptorIndex, HashIndex and LSH algorithm.

Custom LibSVM

• Fix compiler error on Windows with Visual Studio < 2013. Log2 doesn’t exist until that VS version. Added
stand-in.

DescriptorIndex

• Added initial Solr backend implementation.

4.2. Release Notes 87

SMQTK Documentation, Release 0.13.0

Documentation

• Updated documentation to references to CodeIndex and update references to
ITQNearestNeighborsIndex to LSHNearestNeighborIndex.

HashIndex

• Added new HashIndex algorithm interface for efficient neighbor indexing of hash codes (bit vectors).

• Added linear (brute force) implementation.

• Added ball-tree implementation (uses sklearn.neighbors.BallTree)

LshFunctor

• Added new interface for LSH hash code generation functor.

• Added ITQ functor (replaces old ITQNearestNeighborsIndex functionality).

NearestNeighborIndex

• Added generalized LSH implementation: LSHNearestNeighborIndex, which uses a combination of
LshFunctor and HashIndex for modular assembly of functionality.

• Removed deprecated ITQNearestNeighborsIndex implementation (reproducible using the new
LSHNearestNeighborIndex with ItqFunctor and LinearHashIndex).

Tests

• Added tests for DescriptorIndex abstract and in-memory implementation.

• Removed tests for deprecated CodeIndex and ITQNearestNeighborsIndex

• Added tests for LSHNearestNeighborIndex + high level tests using ITQ functor with linear and ball-tree
hash indexes.

Tools / Scripts

• Added optional global default config generation to summarizePlugins.py

• Updated summarizePlugins.py, removing CodeIndex and adding LshFunctor and HashIndex
interfaces.

Utilities

• Added cosine_distance function (inverse of cosine_similarity)

• Updated compute_distance_kernel to be able to take numba.jit compiled functions

Web / Services

• Added query sub-slice return option to NearestNeighborServiceServer web-app.

Fixes since v0.2.2

DescriptorElement

• Fixed mutibility of stored descriptors in DescriptorMemoryElement implementation.

Tools / Scripts

• Added Classifier interface plugin summarization to summarizePlugins.py.

Utilities

• Fixed bug with smqtk.utils.bit_utils.int_to_bit_vector[_large] when give a 0-value in-
teger.

88 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

Web / Services

• Fixed issue with IQR alerts not showing whitespace correctly.

• Fixed issue with IQR reset not resetting everything, which caused the application to become unusable.

4.2.5 SMQTK v0.4.0 Release Notes

This is a minor release that provides various minor updates and fixes as well as a few new command-line tools and a
new web service application.

Among the new tools include a couple classifier validation scripts for checking the performance of a classification
algorithm fundamentally as well as against a specific test set.

A few MEMEX program specific scripts have been added in a separated directory, defining an ingestion process from
an ElasticSearch instance through descritpor and hash code computation.

Finally, a new web service has been added that exposes the IQR process for external tools. The existing IQR demo
web application still functions as it did before, but does not yet use this service under the hood.

Updates / New Features since v0.3.0

Classifiers

• Updated supervised classifier interface to no assume presence of a “negative” class.

• Fixed libSVM implementation train method to not assume “negative” class.

Compute Functions

• Refactored compute_many_descriptors.py main work function into a new sub-module of SMQTK in
in order to allow higher level compute function to be accessible from the SMQTK module API.

• Added function for asynchronously computing LSH codes for some number of input descriptor elements.

Descriptor Index

• Update to postgresql backend to lazy-connect during batch executions, preventing a connection from being made
if nothing is being added.

Documentation

• Added CONTRIBUTING.md file.

• Added example of setting up a NearestNeighborServiceServer with live-reload enabled and how to add/process
incremental ingests.

IQR

• Revised IqrSession class for generalized use (pruned down attributes to what is needed). Fixed IqrSearchApp
due to changes.

Tools / Scripts

• Added CLI script for hash code generation and output to file. This script is primarily for support of LSHNear-
estNeighborIndex live-reload functionality.

• Added script for asynchronously computing classifications on descriptors in an index via a list of descriptor
UUIDs.

• Added script for cross validating a classifier configuration for some truthed descriptors within an index. Can
generate PR and ROC curves.

4.2. Release Notes 89

SMQTK Documentation, Release 0.13.0

• Added some MEMEX specific scripts for processing and updating data from a known Solr index source.

• Added MEMEX-specific script for fetching image data from an ElasticSearch instance and transfering it locally.

• Added script for validating a classifier implementation with a model against a labeled set of descriptors. This
script can also be used to conveniently train a classifier if it is a supervised classifier type.

Utilities

• Added helper wrapper for generalized asynchronous function mapping to an input stream.

• Added helper function for loop progress reporting and timing.

• Added helper function for JSON configuration loading.

• Added helper for utilities, encapsulating standard argument parser and configuration loading/generation steps.

• Renamed “merge_config” to “merge_dict” and moved it to the smqtk.utils module level.

Web

• Added IQR mostly-RESTful service application. Comes with companion text file outlining web API.

Fixes since v0.3.0

ClassificationElement

• Fixed memory implementation serialization bug.

HashIndex

• Fixed SkLearnBallTreeHashIndex model load/save functions to not use pickle due to save size issues. Now uses
numpy.savez instead, providing better serialization and run time.

4.2.6 SMQTK v0.5.0 Release Notes

This is a minor release that provides minor updates and fixes as well as a new Classifier implementation, new param-
eters for some existing algorithms and added scripts that were the result of a recent hackathon.

The new classifier implementation, the IndexLabelClassifier, was created for the situation where the resultant
vector from DescriptorGenerator is actually classification probabilities. An example where this may be the case is
when a CNN model and configuration for the Caffe implementation yields a class probability (or Softmax) layer.

The specific scripts added from the hackathon are related to classifying entities based on associated image content.

Updates / New Features since v0.4.0

Classifier

• Added classifier that applies a list of text labels from file to vector from descriptor as if it were the classification
confidence values.

Descriptor Generators

• Added input_scale pass-through option in the Caffe wrapper implementation.

• Added default descriptor factory to yield in-memory descriptors unless otherwise instructed.

Descriptor Index

• Added warning logging message when PostgreSQL implementation file fails to import the required python
module.

90 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

libSVM

• Tweaked some default parameters in grid.py

LSH Functors

• Added descriptor normalization option to ITQ functor class.

Scripts

• Added new output features to classifier model validation script: confusion matrix and ROC/PR confidence
interval.

• Moved async batch computation scripts for descriptors, hash codes and classifications to bin/.

• Added script to transform a descriptor index (or part of one) into the file format that libSVM likes:
descriptors_to_svmtrainfile.py

• Added script to distort a given image in multiple configurable ways including cropping and brightness/contrast
transformations.

• Added custom scripts resulting from MEMEX April 2016 hackathon.

• Changed MEMEX update script to collect source ES entries based on crawl time instead of insertion time.

Utilities

• Added async functionality to kernel building functions

Fixes since v0.4.0

CMake

• Removed SMQTK_FIRST_PASS_COMPLETE stuff in root CMakeLists.txt

Scripts

• Changed createFileIngest.py so that all specified data elements are added to the configured data set at
the same time instead of many additions.

4.2.7 SMQTK v0.6.0 Release Notes

This minor release provides bug fixes and minor updates as well as Docker wrapping support for RESTful services, a
one-button Docker initialization script for a directory of images, and timed IQR session expiration.

The docker directory is intended to host container Dockerfile packages as well as other associated scripts relating to
docker use of SMQTK. With this release, we provide a Dockerfile, with associated scripts and default configurations,
for a container that hosts a Caffe install for descriptor computation, replete with AlexNet model files, as well as the
NearestNeighbor and IQR RESTful services. This container can be used with the docker/smqtk_services.
run_images.sh for image directory processing, or with existing model files and descriptor index.

The IQR Controller class has been updated to optionally time-out sessions and clean itself over time. This is required
for any service that is going to stick around for any substantial length of time as resources would otherwise build up
and the host machine would run out of RAM.

Updates / New Features since v0.5.0

CMake

• Added scripts that were missing from install command.

4.2. Release Notes 91

SMQTK Documentation, Release 0.13.0

Descriptor Index

• Changed functions that used to take *uuids list expansion as an argument and changed them to take iter-
ables, which no longer causes sequencification of input iterables and is already compatible with all included
implementations except Solr.

• Update Solr implementation functions that used to take *uuid list expansion to properly handle input iterables
of arbitrary sizes.

• DescriptorIndex instances, when iterated over, now yield DescriptorElement instances instead of just the UUID
keys.

Docker

• Added docker container formula for running SMQTK NearestNeighbor and IQR services.

• Added a script to setup SMQTK web services over a directory of images, performing all necessary Docker setup
and data processing. This is intended for demo purposes only and not for large scale processing.

IQR

• Added optional session expiration feature to IqrController class to allow for long-term self clean-up.

Nearest Neighbors Index

• Changed ITQ fit method to by default use multiprocessing over threading, which in general is faster (more
through-put).

Utilities

• Removed by-index access in elements_to_matrix, allowing arbitrary input as long as the __len__ and
__iter__ functions are defined.

• Changed much of the debug messages in smqtk.utils.parallel to “trace” level (level 1).

Scripts

• Simplified the train_itq.py script a little.

Web Apps

• Added configuration of IqrController session expiration monitoring to IQR RESTful (ish) service.

Fixes since v0.5.0

Descriptor Index

• Fixed PostgreSQL back-end bug when iterating over descriptors that caused inconsistent/duplicate elements in
iterated values.

IQR

• Fixed how IqrController used and managed session UUID values.

Utilities

• Fixed bug in int_to_vector functions dealing with vector size estimation.

Web Apps

• Fixed bugs in IQR classifier caching and refreshing from dirty state

• Fixed how the NearestNeighbor service descriptor computation method errors regarding descriptor retrieval in
order to not obfuscate the error.

92 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

4.2.8 SMQTK v0.6.1 Release Notes

This is a patch release with bug fixs for the Docker wrapping of RESTful services introduced in v0.6.0.

Fixes since v0.6.0

Docker

• Fixed issue where smqtk_services.run_images.sh wasn’t properly pulling containers from Dockerhub.

• Fixed typo in default configuration files installed into the container.

• Fixed IQR service function layout to be more explicit in errors caught and raised which maintaining thread
safety.

4.2.9 SMQTK v0.6.1 Release Notes

This is a patch release with a bug fix for Caffe descriptor generation introduced in v0.6.0.

Fixes since v0.6.0

Descriptor Generation

• Fixed bug in Caffe wrapper image array loading where loaded arrays were not in the correctly associated with
data identifiers.

4.2.10 SMQTK v0.7.0 Release Notes

This minor release incorporates various fixes and enhancements to representation and algorithms interfaces and im-
plementations.

A new docker image has been added to wrap the IQR web interface and headless services. This image can either be
used as a push-button image ingestion and IQR interface container, or as a fully feature environment to play around
with SMQTK, Caffe deep-learning-based content description and IQR.

A major departure has happened for some representation structures, like DataElements, as they are no longer consid-
ered hashable and now have interfaces reflecting their mutability. Representation structures, by their nature of having
arbitrary backends, may be modifiable my external agents interacting in a separate manner with the backend being
used. This has also opened up the ability to provide algorithm implementations with DataElement instances instead
of filepaths for desired byte content and many implementations have transitioned over to using this pattern. There is
nothing fundamentally wrong with requesting file-path input, however it is restricting as to where configuration files
or data models may come from.

Updates / New Features since v0.6.2

Algorithms

Descriptor Generators

• Added KWCNN DescriptorGenerator plugin

Build System

• Added setup.py script in support of installation by pip. Updated CMake code to install python components
via this scripts.

4.2. Release Notes 93

SMQTK Documentation, Release 0.13.0

• Added SMQTK_BUILD_FLANN and SMQTK_BUILD_LIBSVM to CMake for optionally building libSVM and
Flann (both default ON).

Classifier Interface

• Added default ClassificationElementFactory that uses the in-memory back-end.

Compute Functions

• Added minibatch kmeans based descriptor clustering function with CLI interface.

Descriptor Elements

• Revised implementation of in-memory representation, doing away with global cache.

• Added optimization to Postgres backend for a slightly faster has_vector implementation.

Descriptor Generator

• Removed lingering assumption of pyflann module presence in colordescriptor.py.

Devops::Ansible

• Added initial Ansible roles for SMQTK and Caffe dependency.

Devops::Docker

• Revised default IQR service configuration file to take into account recently added session expiration support.
Defaults were used before, but now it needs to be specifically enabled as by default expiration is not enabled.

• Added IQR / playground docker container setup. Includes: - CPU + NVIDIA GPU capable docker file. -
Optional input image tiling. - Optional startup of RESTfule NN and IQR services.

Documentation

• Updated build and installation documentation.

• Added missing utility script documentation hooks.

• Standardized utility script definition of argument parser generation function for documentation use.

Girder

• Added initial simple Girder plugin to link to an external IQR webapp instance.

Misc.

• Added algo/rep/iqr imports to top level __init__.py to make basic functionality available without special
imports.

Representation

Data Elements

• Added plugin for Girder-hosted data elements

• Added from_uri member function as well as global function to handle instance construction or
selection via URI string specification.

• Postgres data element will now automatically create its configured table if it doesn’t exist and
authentication and sufficient privileges.

Descriptor Element

• Postgres descriptor element will now automatically create its configured table if it doesn’t exist and
authentication and sufficient privileges.

Descriptor Index

94 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

• Postgres descriptor index will now automatically create its configured table if it doesn’t exist and
authentication and sufficient privileges.

Scripts

• Add script to conveniently make Ball-tree hash index model given an existing hash2uuids.pickle model
file required for the LSHNearestNeighborsIndex implementation.

• compute_many_descriptor.py batch size parameter now defaulted to 0 instead of 256.

• Add script to cluster an index of descriptors via mini-batch kmeans (scikit-learn).

• Added script wraping the use of the mini-batch kmeans descriptor clustering function.

• Added scripts and notebooks for retrieving MEMEX-specific data from ElasticSearch.

• Moved-command line scripts to the smqtk.bin sub-module in order to use setuptool support for cross-
platform executable generation.

• classifier_kfold_validation utility now only uses MemoryClassificationElement instead of letting
it be configurable.

• Added script for finding nearest neighbors of a set of UUIDs given a nearest neighbors index.

• Added script to add GirderDataElements to a data set

Utilities

• Started a module containing URL-base utility functions, initially adding a url-join function similar in capability
to os.path.join.

• Added fixed tile cropping to image transform tool.

• Added utility functions to detect mimetypes of files via file-magic or tika optional dependencies.

Web

• Updated/Rearchitected IqrSearchApp (now IqrSearchDispatcher) to be able to spawn multiple IQR configura-
tions during runtime in addition to any configured in the input configuration JSON file. This allows external
applications to manage configuration storage and generation.

• Added directory for Girder plugins and added an initial one that, given a folder with the correct metadata
attached, can initialize an IQR instance based on that configuration, and then link to IQR web interface (uses
existing/updated IqrSearch web app).

• Added ability to automatically login via a valid Girder token and parent Girder URL for token/user verification.
This primarily allows restricted external IQR instance creation and automatic login from Girder redirects.

• Mongo session information block at bottom IQR app page now only shows up when running server in debug
mode.

• Added document showing complete use case with IQR RESTful webservice using the IQR docker image with
LEEDS Butterfly data. Includes expected results users should be able to replicate.

Fixes since v0.6.2

Documentation

• Fixed issues caused by moving scripts out of ./bin/ to ./python/smqtk/bin.

Scripts

• Fix logging bug in compute_many_descriptors.py when file path has unicode in it.

• Removed final loop progress report from compute_many_descriptors.py as it did not report valid statistics.

4.2. Release Notes 95

SMQTK Documentation, Release 0.13.0

• Fixed deprecated import of flask-basicauth module.

• Fixed DescriptorFileElement cache-file save location directory when configured to use subdirectories. Now no
longer creates directories to store only a single file. Previous file-element roots are not compatible with this
change and need to be re-ingested.

• Fixed IQR web app url prefix check

Metrics

• Fixed cosine distance function to return angular distance.

Utilities

• SmqtkObject logger class accessor name changed to not conflict with flask.Flask logger instance at-
tribute.

Web

• Fixed Flow upload browse button to not only allow directory selection on Chrome.

4.2.11 SMQTK v0.8.0 Release Notes

This minor release represents the merger of a public release that added a Girder-based implementation of the DataEle-
ment interface. We also optimized the use of the PostgreSQL DescriptorIndex implementation to use named cursors
for large queries.

Updates / New Features since v0.7.0

Data Structures

• Revise GirderDataElement to use girder_client python module and added the the use of girder authentication
token values in lieu of username/password for communication authorization.

• Add the optional use of named cursors in PostgreSQL implementation of the DescriptorIndex interface. Assists
with large selects such that the server only sends batches of results at a time instead of the whole result pool.

• Added PostgreSQL implementation of the KeyValueStore interface.

Girder

• Initial SMQTK Girder plugin to support image descriptor processing via girder-worker.

• Initial SMQTK Girder plugin implementing a resource and UI for SMQTK nearest neighbors and IQR.

Fixes since v0.7.0

Data Structures

• Added locking to PostgreSQL DescriptorElement table creation to fix race condition when multiple elements
tried to create the same table at the same time.

• Fix unconditional import of optional girder_client dependency.

Dependencies

• Pinned Pillow version requirement to 4.0.0 due to a large-image conversion issue that appeared in 4.1.x. This
issue may have been resolved in newer versions of Pillow.

Scripts

96 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

• Various fixes to IQR model generation process due to changes made to algorithm input parameters (i.e. taking
DataElement instances instead of filepaths).

• Fixes build_iqr_models.sh to follow symlinks when compiling input image file list.

Tests

• Fix missing abstract function override in KeyValueStore test stub.

• Fix test girder_client.HttpError import issue.

4.2.12 SMQTK v0.8.1 Release Notes

This patch release addresses a bug with PostgreSQL implementations incorrectly calling a helper class.

Fixes since v0.8.0

Descriptor Index Plugins

• Fix bug in PostgreSQL plugin where the helper class was not being called appropriately.

Utilities

• Fix bug in PostgreSQL connection helper where the connection object was being called upon when it may not
have been initialized.

4.2.13 SMQTK v0.9.0 Release Notes

This minor release represents an update to supporting python 3 versions as well as adding connection pooling support
to the PostgreSQL helper class.

Updates / New Features since v0.8.1

General

• Added support for Python 3.

• Made some optimizations to the Postgres database access.

Travis CI

• Removed use of Miniconda installation since it wasn’t being utilized in special way.

Fixes since v0.8.1

Tests

• Fixed ambiguous ordering check in libsvm-hik implementation of RelevancyIndex algorithm.

4.2.14 SMQTK v0.10.0 Release Notes

This minor release represents the merger of public release request 88ABW-2018-3703. This large updated adds a num-
ber of functionality improvements and API changes, docker image improvements and expansions (see the new clas-
sifier service), FAISS algorithm wrapper improvements, NearestNeighborIndex update and removal support, a
switch to py.test testing framework, generalized classification probability adjustment function, code clean-up, bug
fixes and more.

4.2. Release Notes 97

SMQTK Documentation, Release 0.13.0

Updates / New Features since v0.9.0

Algorithms

• Classifier

– Added ClassifierCollection support class. This assists with aggregating multiple SMQTK classifier im-
plementations and applying one or more of those classifiers to input descriptors.

– Split contents of the __init__.py file into multiple component files. This file was growing too large with
the multiple abstract classes and a new utility class.

– Changed classify abstract method to raise a ValueError instead of a RuntimeError upon being given an
empty DescriptorElement.

– Updated SupervisedClassifier abstract interface to use the template pattern with the train method. Now,
implementing classes need to define _train. The train method is not abstract anymore and calls the
_train method after the input data consolidation.

– Update API of classifier to support use of generic extra training parameters.

– Updated libSVM classifier algorithm to weight classes based on the geometric mean of class counts
divided by specific class count to more properly handle weighting even if there is class imbalance.

• Hash Index

– Made to be its own interface descending from SmqtkAlgorithm instead of NearestNeighborsIndex. While
the functionality of a NN-Index and a HashIndex are very similar, all method interfaces are different in
terms of the types they accept and return and the HashIndex implementation redefined and documented
them to the point where there was no shared functionality.

– Switched to using the template method for abstract methods.

– Add update and remove methods to abstract interface. Implemented new interface methods in all sub-
classes.

– Added model concurrency protection to implementations.

• Nearest-Neighbors

– Switched to using the template method for abstract methods.

– Add update and remove methods to abstract interface. Implemented new interface methods in all sub-
classes.

– Fix imports in FAISS wrapper module.

– Added model concurrency protection to implementations.

– FAISS

* Add model persistence via optionally provided DataElement.

* Fixed use of strings for python 2/3 compatibility.

* Changed default factory string to “IVF1,Flat”.

* Added initial GPU support to wrapper. Currently only supports one GPU with explicit GPU ID
specification.

Representations

• Descriptor Index

98 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

– Added __contains__ method to abstract class to call the has method. This should usually be more efficient
than scanning the iteration of the index which is what was happening before. For some implementations,
at worst, the runtime for checking for inclusion will be the same (some implementations may have to
iterate).

• Descriptor Element

– Interface

* Hash value for an element is now only composed of UID value. This is an initial step in deprecating
the use of the type-string property on descriptor elements.

* Equality check between elements now just vector equality.

* Added base implementation of __getstate__ and __setstate__. Updated implementations to handle
this as well as be backward compatible with their previous serialization formats.

* Added a return of self to vector setting method for easier in-line setting after construction.

– PostgreSQL

* Updated to use PsqlConnectionHelper class.

• KeyValueStore

– Added remove and remove_many abstract methods to the interface. Added implementations to current
subclasses.

– Added __getitem__ implementation.

Docker

• Caffe

– Updated docker images for CPU or GPU execution.

– Updated Caffe version built to 1.0.0.

• Added Classifier service docker images for CPU or GPU execution.

– Inherits from the Caffe docker images.

– Uses MSRA’s ResNet-50 deep learning models.

• IQR Playground

– Updated configuration files.

– Now only runs IQR RESTful service and IQR GUI web app (removed nearest- neighbors service).

– Simplified source image mount point to /images.

– Updated run_container.*.sh helper scripts.

– Change deep-learning model used from AlexNet to MSRA’s RestNet-50 model.

• Versioning changes to, by default, encode date built instead of arbitrary separate versioning compared to
SMQTK’s versioning.

• Classifier and IQR docker images now use the local SMQTK checkout on the host system instead of cloning
from the internet.

IQR module

• Added serialization load/save methods to the IqrSession class.

Scripts

• generate_image_transform

4.2. Release Notes 99

SMQTK Documentation, Release 0.13.0

– Added stride parameter to image tile cropping feature to allow for more than just discrete, abutting tile
cropping.

• runApplication

– Add ability to get more than individual app description from providing the -l option. Now includes the
title portion of each web app’s doc-string.

• Added smqtk-make-train-test-sets

– Create train/test splits from the output of the compute_many_descriptors tool, usually for training and
testing a classifier.

Testing

• Remove use of nose-exclude since there are now actual tests in the web sub-module.

• Switch to using pytest as the test running instead of nose. Nose is now in “maintenance mode” and recommends
a move to a different testing framework. Pytest is a popular a new powerful testing framework alternative with
a healthy ecosystem of extensions.

• Travis CI

– Removed use of Miniconda installation since it wasn’t being utilized in special way.

• Added more tests for Flask-based web services.

Utilities module

• Added mimetype utilities sub-module.

• Added a web utilities module.

– Added common function for making response Flask JSON instances.

• Added an iter_validation utility submodule.

• Plugin utilities

– Updated plugin discovery function to be more descriptive as to why a module or class was ignored. This
helps debugging and understanding why an implementation for an interface is not available at runtime.

• PostgreSQL

– Added locking to table creation upsert call.

• Added probability utils submodule and initial probability adjustment function.

Web

• Added new classifier service for managing multiple SMQTK classifier instances via a RESTful interface as well
as describe arbitrary new data with the stored classifiers. This service also has the ability to take in saved IQR
session states and train a new binary classifier from it.

– Able to query the service with arbitrary data to be described and classified by one or more managed
classifiers.

– Able to get and set serializations of classifier models for archival.

– Added example directory of show how to run and to interact with the classifier service via curl.

– Optionally take a new parameter on the classify endpoint to adjust the precision/recall balance of results.

• IQR Search Dispatcher (GUI web app)

– Refactored to use RESTful IQR service.

– Added GUI and JS to load an IQR state from file.

100 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

– Update sample JSON configuration file at python/smqtk/web/search_app/sample_configs/config.IqrSearchApp.json.

– Added /is_ready endpoint for determining that the service is alive.

• IQR service

– Added ability to an IQR state serialization into a session.

– Added sample JSON configuration file to python/smqtk/web/search_app/sample_configs/config.IqrRestService.json.

– Added /is_ready endpoint for determining that the service is alive.

– Move class out of the __init__.py file and into its own dedicated file.

– Make IQR state getter endpoint return a JSON containing the base64 of the state instead of directly
returning the serialization bytes.

– Added endpoints to update, remove from and query against the global nearest-neighbors index.

Fixes since v0.9.0

Algorithms

• Nearest-Neighbor Index

– LSH

* Fix bug where it was reporting the size of the nested descriptor index as the size of the neighbor
index when the actual index state is defined by the hash-to-uids key-value mapping.

Representations

• DataElement

– Fixed bug where write_temp() would fail if the content_type() was unknown (i.e. when it returned None).

• Descriptor Index

– PostgreSQL

* Fix bug where an instance would create a table even though the create_table parameter was set to
false.

• Descriptor Elements

– PostgreSQL implementation

* Fix set_vector method to be able to take in sequences that are not explicitly numpy arrays.

• KeyValue

– PostgreSQL

* Fix bug where an instance would create a table even though the create_table parameter was set to
false.

Scripts

• classifier_model_validation

– Fixed confidence interval plotting.

– Fixed confusion matrix plot value range to the [0,1] range which causes the matrix colors to have meaning
across plots.

Setup.py

4.2. Release Notes 101

SMQTK Documentation, Release 0.13.0

• Add smqtk- to some scripts with camel-case names in order to cause them to be successfully removed upon
uninstallation of the SMQTK package.

Tests

• Fixed ambiguous ordering check in libsvm-hik implementation of RelevancyIndex algorithm.

Web

• IQR Search Dispatcher (GUI web app)

– Fix use of StringIO to using BytesIO.

– Protect against potential deadlock issues by wrapping intermediate code with try/finally clauses.

– Fixed off-by-one bug in javascript DataView construction.

• IQR Service

– Gracefully handle no-positive-descriptors error on working index initialization.

– Fix use of StringIO to using BytesIO.

4.2.15 SMQTK v0.11.0 Release Notes

This minor release includes a number of security and stability fixes for algorithms and the IQR demo web application.

Updates / New Features since v0.10.0

Documentation

• Updated IQR Demo Application documentation RST file and images to reflect the current state of SMQTK and
that process.

Fixes since v0.10.0

Algorithms

• Classifiers

– SVM

* Fixed broken large model saving in Python 2, creating parity with Python 3.

• Nearest-Neighbors

– FAISS

* Fixed use of strings for compatibility with Python 2.

* Fixed broken large model saving in Python 2, creating parity with Python 3.

– FLANN

* Fixed broken large model saving in Python 2, creating parity with Python 3.

– Hash Index

* Scikit-Learn BallTree

· Fix save_model and load_model methods for additional compatibility with scikit-learn
version 0.20.0.

– LSH

102 Chapter 4. Release Process and Notes

SMQTK Documentation, Release 0.13.0

* Fix issue with update and remove methods when constructed with a key-value store structure that
use the frozenset type.

* Fix issue with on-the-fly linear hash index build which was previously not correctly setting a set of
integers.

Descriptor Generator Plugins

• Fix issue with CaffeDescriptorGeneratorwhere the GPU would not be appropriately used on a separate
thread/process after initialization occurs on the main (or some other) thread.

Docker

• IQR Playground

– Updated README for better instruction on creating the docker image first.

• Caffe image

– Resolved an issue with upgrading pip for a newer version of matplotlib.

Documentation

• Removed module mocking in sphinx conf.py as it has been shown to be brittle to changes in the source code.
If we isolate and document a use-case where the mocking becomes relevant again we can bring it back.

Misc.

• Update requests and flask package version in requirements.txt and devops/docker/
smqtk_wrapper_python/requirements.txt files due to GitHub security alert.

• Updated package versions for packages in the requirements.docs.txt requirements file.

Utilities

• Fixed broken large file writing in Python 2, creating parity with Python 3.

• Fixed iqr_app_model_generation.py script for the current state of SMQTK functionality.

• Fixed double logging issue in python/smqtk/bin/classifyFiles.py tool.

Web

• IQR Search Demo App

– Fixed input element autocomplete property value being set from disabled” to the correct value of “off”.

– Fix CSRF vulnerability in demo web application front-end.

– Fixed sample configuration files for the current state of associated tools.

4.2.16 SMQTK v0.12.0 Release Notes

This minor release includes minor fixes and known dependency version updates.

Fixes

Docker

• Fix issue with IQR playground image where matplotlib was attempting to use the TkAgg backend by default by
adding a matplotlibrc file to specify the use of the Agg backend.

Misc

• Update requirements versions for: Flask, Flask-Cors, Pillow

4.2. Release Notes 103

SMQTK Documentation, Release 0.13.0

• Update Travis-CI configuration to assume less default values.

Web

• IQR Service

– Broaden base64 parsing error catch. Specific message of the error changed with python 3.7.

104 Chapter 4. Release Process and Notes

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

105

SMQTK Documentation, Release 0.13.0

106 Chapter 5. Indices and tables

Index

A
add_data() (smqtk.representation.DataSet method),

10
add_descriptor() (smqtk.representation.DescriptorIndex

method), 12
add_many_descriptors()

(smqtk.representation.DescriptorIndex
method), 12

B
build_index() (smqtk.algorithms.nn_index.hash_index.HashIndex

method), 23
build_index() (smqtk.algorithms.nn_index.NearestNeighborsIndex

method), 25
build_index() (smqtk.algorithms.relevancy_index.RelevancyIndex

method), 27

C
CFLAGS, 5
ClassificationElementFactory (class in

smqtk.representation), 15
Classifier (class in smqtk.algorithms.classifier), 19
classify() (smqtk.algorithms.classifier.Classifier

method), 19
classify_async() (smqtk.algorithms.classifier.Classifier

method), 20
clean_temp() (smqtk.representation.DataElement

method), 8
clear() (smqtk.representation.DescriptorIndex

method), 12
compute_descriptor()

(smqtk.algorithms.descriptor_generator.DescriptorGenerator
method), 21

compute_descriptor_async()
(smqtk.algorithms.descriptor_generator.DescriptorGenerator
method), 21

Configurable (class in smqtk.utils.configuration), 63
content_type() (smqtk.representation.DataElement

method), 8

count() (smqtk.algorithms.nn_index.hash_index.HashIndex
method), 23

count() (smqtk.algorithms.nn_index.NearestNeighborsIndex
method), 25

count() (smqtk.algorithms.relevancy_index.RelevancyIndex
method), 27

count() (smqtk.representation.DataSet method), 10
count() (smqtk.representation.DescriptorIndex

method), 12
CPPFLAGS, 5
CXXFLAGS, 5

D
DataElement (class in smqtk.representation), 7
DataSet (class in smqtk.representation), 10
DescriptorElement (class in smqtk.representation),

10
DescriptorElementFactory (class in

smqtk.representation), 16
DescriptorGenerator (class in

smqtk.algorithms.descriptor_generator),
21

DescriptorIndex (class in smqtk.representation), 12
DescriptorServiceServer (class in

smqtk.web.descriptor_service), 32
detect_objects() (smqtk.algorithms.object_detection.ObjectDetector

method), 26
DetectionElement (class in smqtk.representation),

14
DetectionElementFactory (class in

smqtk.representation), 17

E
environment variable

CFLAGS, 5
CPPFLAGS, 5
CXXFLAGS, 5
LDFLAGS, 5

107

SMQTK Documentation, Release 0.13.0

F
from_config() (smqtk.representation.ClassificationElementFactory

class method), 15
from_config() (smqtk.representation.DescriptorElement

class method), 11
from_config() (smqtk.representation.DescriptorElementFactory

class method), 16
from_config() (smqtk.representation.DetectionElement

class method), 14
from_config() (smqtk.representation.DetectionElementFactory

class method), 17
from_config() (smqtk.utils.configuration.Configurable

class method), 63
from_config() (smqtk.web.SmqtkWebApp class

method), 31
from_uri() (smqtk.representation.DataElement class

method), 8

G
generate_descriptor()

(smqtk.web.descriptor_service.DescriptorServiceServer
method), 32

generator_label_configs
(smqtk.web.descriptor_service.DescriptorServiceServer
attribute), 33

get_bytes() (smqtk.representation.DataElement
method), 8

get_config() (smqtk.representation.ClassificationElementFactory
method), 15

get_config() (smqtk.representation.DescriptorElementFactory
method), 17

get_config() (smqtk.representation.DetectionElementFactory
method), 18

get_config() (smqtk.utils.configuration.Configurable
method), 64

get_config() (smqtk.web.descriptor_service.DescriptorServiceServer
method), 33

get_config() (smqtk.web.SmqtkWebApp method), 31
get_data() (smqtk.representation.DataSet method),

10
get_default_config()

(smqtk.representation.ClassificationElementFactory
class method), 16

get_default_config()
(smqtk.representation.DescriptorElement
class method), 11

get_default_config()
(smqtk.representation.DescriptorElementFactory
class method), 17

get_default_config()
(smqtk.representation.DetectionElement
class method), 14

get_default_config()
(smqtk.representation.DetectionElementFactory

class method), 18
get_default_config()

(smqtk.utils.configuration.Configurable class
method), 64

get_default_config()
(smqtk.web.descriptor_service.DescriptorServiceServer
class method), 33

get_default_config() (smqtk.web.SmqtkWebApp
class method), 32

get_descriptor() (smqtk.representation.DescriptorIndex
method), 12

get_descriptor_inst()
(smqtk.web.descriptor_service.DescriptorServiceServer
method), 33

get_detection() (smqtk.representation.DetectionElement
method), 14

get_hash() (smqtk.algorithms.nn_index.lsh.functors.LshFunctor
method), 24

get_impls() (smqtk.utils.plugin.Pluggable class
method), 63

get_labels() (smqtk.algorithms.classifier.Classifier
method), 20

get_many_descriptors()
(smqtk.representation.DescriptorIndex
method), 13

get_many_vectors()
(smqtk.representation.DescriptorElement
class method), 11

get_many_vectors()
(smqtk.representation.DescriptorIndex
method), 13

get_plugins() (in module smqtk.utils.plugin), 62

H
has_descriptor() (smqtk.representation.DescriptorIndex

method), 13
has_detection() (smqtk.representation.DetectionElement

method), 15
has_uuid() (smqtk.representation.DataSet method),

10
has_vector() (smqtk.representation.DescriptorElement

method), 11
HashIndex (class in

smqtk.algorithms.nn_index.hash_index),
23

I
ImageReader (class in smqtk.algorithms.image_io), 22
impl_directory() (smqtk.web.SmqtkWebApp class

method), 32
is_empty() (smqtk.representation.DataElement

method), 8
is_read_only() (smqtk.representation.DataElement

method), 8

108 Index

SMQTK Documentation, Release 0.13.0

is_usable() (smqtk.utils.plugin.Pluggable class
method), 63

is_usable() (smqtk.web.descriptor_service.DescriptorServiceServer
class method), 33

is_valid_element()
(smqtk.algorithms.image_io.ImageReader
method), 22

items() (smqtk.representation.DescriptorIndex
method), 13

iterdescriptors()
(smqtk.representation.DescriptorIndex
method), 13

iteritems() (smqtk.representation.DescriptorIndex
method), 13

iterkeys() (smqtk.representation.DescriptorIndex
method), 13

K
keys() (smqtk.representation.DescriptorIndex

method), 13

L
LDFLAGS, 5
load_as_matrix() (smqtk.algorithms.image_io.ImageReader

method), 22
LshFunctor (class in

smqtk.algorithms.nn_index.lsh.functors),
24

M
md5() (smqtk.representation.DataElement method), 8

N
name (smqtk.algorithms.SmqtkAlgorithm attribute), 19
NearestNeighborsIndex (class in

smqtk.algorithms.nn_index), 25
new_classification()

(smqtk.representation.ClassificationElementFactory
method), 16

new_descriptor() (smqtk.representation.DescriptorElementFactory
method), 17

new_detection() (smqtk.representation.DetectionElementFactory
method), 19

nn() (smqtk.algorithms.nn_index.hash_index.HashIndex
method), 24

nn() (smqtk.algorithms.nn_index.NearestNeighborsIndex
method), 25

O
ObjectDetector (class in

smqtk.algorithms.object_detection), 26

P
Pluggable (class in smqtk.utils.plugin), 62

R
rank() (smqtk.algorithms.relevancy_index.RelevancyIndex

method), 27
RelevancyIndex (class in

smqtk.algorithms.relevancy_index), 27
remove_descriptor()

(smqtk.representation.DescriptorIndex
method), 13

remove_from_index()
(smqtk.algorithms.nn_index.hash_index.HashIndex
method), 24

remove_from_index()
(smqtk.algorithms.nn_index.NearestNeighborsIndex
method), 26

remove_many_descriptors()
(smqtk.representation.DescriptorIndex
method), 14

resolve_data_element()
(smqtk.web.descriptor_service.DescriptorServiceServer
method), 33

run() (smqtk.web.SmqtkWebApp method), 32

S
set_bytes() (smqtk.representation.DataElement

method), 8
set_detection() (smqtk.representation.DetectionElement

method), 15
set_vector() (smqtk.representation.DescriptorElement

method), 11
sha1() (smqtk.representation.DataElement method), 9
sha512() (smqtk.representation.DataElement method),

9
SmqtkAlgorithm (class in smqtk.algorithms), 19
SmqtkRepresentation (class in

smqtk.representation), 7
SmqtkWebApp (class in smqtk.web), 31

T
to_buffered_reader()

(smqtk.representation.DataElement method), 9
type (smqtk.representation.ClassificationElementFactory

attribute), 16
type() (smqtk.representation.DescriptorElement

method), 12

U
update_index() (smqtk.algorithms.nn_index.hash_index.HashIndex

method), 24
update_index() (smqtk.algorithms.nn_index.NearestNeighborsIndex

method), 26
uuid() (smqtk.representation.DataElement method), 9
uuid() (smqtk.representation.DescriptorElement

method), 12

Index 109

SMQTK Documentation, Release 0.13.0

uuids() (smqtk.representation.DataSet method), 10

V
vector() (smqtk.representation.DescriptorElement

method), 12

W
writable() (smqtk.representation.DataElement

method), 9
write_temp() (smqtk.representation.DataElement

method), 9

110 Index

	Installation
	From pip
	From Source

	SMQTK Architecture Overview
	Data Abstraction
	Algorithms
	Web Service and Demonstration Applications
	Utilities and Applications
	Plugin Architecture

	Examples
	Simple Feature Computation with ColorDescriptor
	Nearest Neighbor Computation with Caffe
	NearestNeighborServiceServer Incremental Update Example

	Release Process and Notes
	Steps of the SMQTK Release Process
	Release Notes

	Indices and tables
	Index

